
?context



1

Rationale

Occasionally I run into a description of ConTEXt that contains observations

that are somewhat off. It therefore makes sense to provide some insight in

why this macro package looks the way it looks. What started out as a TEX

only system evolved via adding METAPOST to the current hybrid system that

also uses and provides Lua. However, the original goals and principles are

still valid.

The system

The TEX macro language and interpreter are about automated typesetting.

A collection of predefined macros is called a macro package and ConTEXt

is such a package. The program that interprets the macros and converts

input into typeset results is called the engine. An example of an engine is

LuaTEX. The graphic companion of TEX isMETAFONT, or nowadaysMETAPOST

and ConTEXt integrates support for that graphical language and rendering.

As ConTEXt comes with a bunch of tools that manage the process it is a

sort of typographic ecosystem. The input can be a document encoded in

structured TEX code or it can be xml. In fact anything that makes sense

can be processed if only because we can use Lua to convert it runtime. The

output is in most cases pdf, but xml (or xhtml with CSS) is also an option. In

addition to static printable documents you can produce highly interactive

documents for screen and reader.

The TEX system, and therefore ConTEXt, are quite capable to produce high

quality output, can handle many scripts and languages, are able to typeset

mathematics and can keep up pretty well with developments, thanks to the

open character of the whole system. There is an active community that

takes care of the software distributions and develops the engines as well as

additional resources like fonts. User groups play an important role in this.

The ConTEXt system is supported by active mailing lists and a wiki.

The syntax

The syntax is rather straightforward and uses commands that start with a \,

the curly braces {} for delimiting variable content and the square brackets



2

[] for (optional) directives and settings. A good example is one of the oldest

commands:

\startitemize[packed]

\item some text

\item some more text

\stopitemize

Before we ran into TEX we already had some programs that dealt with sim-

ple formatting and start/stop constructs were used there. The not delimited

\item command was just taken from what we saw in other TEX code. In ret-

rospect we should have used \startitem and \stopitem commands right

from the start but it’s only with MkIV that we start promoting this more

strongly. Actually there are only a few commands that are not delimited

and this is one of them. So, this is today’s fashion:

\startitemize[packed]

\startitem some text \stopitem

\startitem some more text \stopitem

\stopitemize

One reason for getting rid of the few non delimited cases is that is’t more

cleaner in the perspective of hooking in code as well as exporting to for

instance xml.

The (optional) argument between square brackets use those brackets be-

cause for a beginning macro writer (which I definitely was when I started

with ConTEXt) it’s not that hard to implement. It also looks nice on screen,

especially when you use syntax highlighting. When ConTEXt showed up we

still used our own editor and it used a color scheme that can still be found

in the pretty printer code. So, to a large extent, the syntax has been deter-

mined by how well it could be visualized in an editor. We set up commands

using:

\setupsomething

[whatever]

[key-1=value-1,

key-2=value-2]



3

Spaces after a comma are ignored contrary to spaces before and after an

equal sign. It takes more (and slower) code to do that and picking up keys

and values is already slow enough, especially when we started doing it.

I’m writing this in the SciTE editor (2.29) using updated syntax highlighting

code that was added to the distribution around the ConTEXt conference in

2011. Of course the TEX code gets highlighted, but so does METAPOST and

Lua code. Runtime spell checking is included. Developments like that have

some impact on the user interface and the way (low level) code is written.

Visualization of code and source has been and always will be an important

aspect of how ConTEXt evolves.

The multilingual interface

A second important aspect of ConTEXt is that there is just one version. I

simply could not come up with a good reason to use different names for

different engines. After all, most of the (older) core functionality is shared.

It is always a surprise to run into descriptions of ConTEXt being dependent

on pdfTEX, Perl, or Ruby. In ConTEXt there has always been an abstract layer

between the core code and the backend and support and in MkII relatively

little amount of backend specific code is loaded. In MkIV we have several

backends running at the same time: pdf and xml export can run in parallel.

Being closely involved in the development of pdfTEX naturally means that

I used that engine but originally we used dvipsone and ConTEXt MkII sup-

ports several backends. The dependency on Perl and later Ruby was only

true for the script that manages a run (originally the index sorter was writ-

ten in Modula2). One could run unmanaged but it’s much more convenient

for users not to worry about how many runs are needed. It also gave us

the opportunity to provide command line arguments. And of course index

sorting has to happen somewhere out of TEX itself so why not combine these

tasks in one script. When we moved on to Lua it was natural to stick to only

Lua and as LuaTEX is also a Lua interpreter, there is no extra dependency

in ConTEXt MkIV.

We have only one version, but on your system you might find more than one

cont-* file. The reason for this is that there are different user interfaces.

We started with the Dutch interface and later added an English and German

one. Of course some more followed.



4

When we started using LuaTEX, it quickly became clear that we had to split

the code base and so we did. In fact one can now indeed claim a depen-

dency: on LuaTEX. The fact that MkII is frozen is a clear signal that we see

no future for the other engines in the ConTEXt community and their develop-

ment is stalled anyway. The same is true for related technologies like fonts.

Why stick to obsolete font formats when we can move on. Fortunately users

are quite willing to move on with us.

The dependency on Lua is not so much a dependency as well as progress,

especially if we keep in mind that the development of LuaTEX has been

driven by the ConTEXt people. It’s way more fun to use the TEX, Lua and

METAPOST languages for what they are best suited for than to try to squeeze

all functionality out themacro language only. It also suits the original design

goals that Don Knuth gave TEX: to take the code and adapt it to ones needs.

An interesting side effect of the multilingual interface is that it made the

low level key/value handling more efficient. Given that we nowadays have

faster machines in MkIV some of the gain in speed has been sacrified to a

more neat but slower inheritance subsystem. Probably no user will notice

this anyway.

Being monolitic

When you run ConTEXt you don’t need to load (or setup) extra styling code.

You will always get some output. For those who come from other macro

packages this is somewhat hard to grasp and sometimes seen as a disad-

vantage.

However, a fact is that in practice one can easily modulate on the defaults.

\setupbodyfont[dejavu]

\setuplayout[width=middle,height=middle]

\setupwhitespace[big]

\setuphead[chapter][style=\bfc]

\setuphead[section][style=\bfb]



5

Is the above really much more work than loading a style that defines the

font and another one that sets up the spacing and styles? Also, a user can

put these commands in a file and load that one. Changing the look and feel

this is way more convenient than loading some default and try to overload

unwanted settings (especially if that style changes). It also gives the user

an idea that there can be a personal touch to the document. Of course the

user can just stick to the defaults.

Any observation that users are supposed to know plain TEX or do some cod-

ing is just wrong and probably come from experiences with other macro

packages. On the other hand it might help the user to know a bit about

the project structure, separating structure and layout and limiting coding.

Much in ConTEXt relates to structure and the actual rendering is an inde-

pendent issue. Of course a user can still do things similar to plain TEX, so

buying a copy of The TEX Book is no waste: you can use most tricks men-

tioned there in ConTEXt and there is a lot of information about fine-tuning

math typesetting. It also does not hurt to know a bit about where we come

from.

Speed

Indeed ConTEXt is not a fast runner, but it’s not that slow either. In some

cases a slow terminal is the culprit (as TEX does no buffering), and in other

cases the user just asks for something that needs processing time. Espe-

cially decorating the page will increase the runtime. Of course delegating

some action to Lua costs time, but we gain back functionality that other-

wise would not be possible or take much more runtime. The startup time

of MkIV is much shorter than MkII which is partly due to more efficient

file searching so in practice MkIV runtime is quite acceptable, espically if

we consider that we load larger fonts and operate in a Unicode universum.

Also, hyphenation patterns are loaded only when needed and, when used,

METAPOST processing happens instantaneously.

Development

Indeed most development is done by a few people, but how bad is that? If

we look at the larger picture, there is a whole infrastructure in place: wiki,

stand-alone distribution, mailing lists, conferences, and all hat is taken care



6

of by pretty active crowd. The advantage of a small development team is

that consistency is easier to guard and (hopefully) the distance between

developers and regular users is rather small. Also, input with regards to

subsystems (language labels, font definitions, etc.) is accepted from who-

ever comes up with improvements, given that they are consistent. There

are no formal committees and reasonable demands are often met within

reasonable time.

Specific fields

There is no reason why you shouldn’t use ConTEXt if you need to typeset

math. First of all it runs on top of TEX so you will get your math done

one way or the other. Also, math support is quite complete although the

implementation differs from othermacro packages (this might be evenmore

true in MkIV). We’re not bound by traditions and have some pretty good

experts on board that helps us to move on. And more is coming.

Another area of interest is critical editions. Again some experts in the field

are involved and ConTEXt keeps evolving in this area, driven by demands

from advanced users.

All the usual bells and whistles that TEX engines can offer, like character

protrusion and hz optimization are supported as are advanced font features.

Also, we already had quite some specialized functionality for detailed type-

setting andmuch already has been rewritten inMkIV. Quite some languages

are supported right out of the box. However, keep in mind that this is all

built in so don’t start looking for special styles or so (as the lack of them

might suggest that it’s not there). Just join the mailing list.

Kernel code

Users normally stick to the more high level commands. There are however

quite some support macros. The real low level code is not be touched by

users. Users coming from other packages might need to get accustomed

to leaving them along and define (and tweak) instances at the higher level.

In MkIV most of ConTEXt is also available at the Lua end and sometimes

solving more complex problems is done easier that way. By now we have

a hybrid system. As part of the rather drastic MkIV cleanup and rewrite



7

we’re in the process of hiding obscure code from the user and might end

up with better low level api documentation.

On top of the kernel code we have some modules. These implement very

specific functionality andmore andmore get written. There are for instance

modules for typesetting MathML, loading fonts with less commands, inte-

grating external applications, (advanced) presentations, tracing. They are

good examples of how to write extensions.

Documentation

There is quite some documentation but it’s rather diverse. The documents

written by the authors are often a side effect of some development. There

is a shift towards more general documentation (and even printed copies

are available) but writing can get a lower priority in a time when quick

and dirty answers can be found on the internet, mailing list or wiki. On

the other hand, the user interface has always been pretty well defined in a

formal way) and once a user knows what some keys do with a command, he

or she can also use that knowledge for other commands. And, as we aim

for upward compatibility, a decade old manual might still apply so there is

no need to render it again just for the sake of updating a date.

For what it’s worth: whenever I have to solve a problem with a program (or

language implementation) I run into cases where I have to look long to find

(non conflicting) information. It just comes with the problems one wants to

solve and TEX (ConTEXt) is not different.

Conclusion

So let’s draw some conclusions and limit ourselves to MkIV. First of all this

is the versions that (new) users are supposed to use. It also means that

they use LuaTEX, which in turn means that there are no further dependen-

cies. The ConTEXt suite that you can download from contextgarden.net

is an easy starting point and TEX Live is also an option. They should just

start and delay styling to when they feel the need. By that time they only

need a handful of commands to get a decent job done. If you can’t find the

documentation you need (on paper of on the wiki), consider participating

in writing it.



8

Hans Hagen

PRAGMA ADE

Hasselt NL

October 30, 2011

www.pragma-ade.nl

www.contextgarden.net


