
luatools
mtxrun
context



luatools mtxrun context 1

Contents

1 Remark 1
2 Introduction 1
3 The location 2
4 The traditional finder 2
5 The current finder 3
6 Updating 6
7 The tools 7
8 Running CONTEXT 8
9 Prefixes 11
10 Stubs 11
11 A detailed look at mtxrun 12

1 Remark
This manual is work in progress. Feel free to submit additions or corrections. Be-
fore you start reading, it is good to know that in order to get starting with Con-
TEXt, the easiest way to do that is to download the standalone distribution from
contextgarden.net. After that you only need to make sure that luatex is in your
path. Themain command you use is then context and normally it does all themagic
it needs itself.

2 Introduction
Right from the start ConTEXt came with programs that managed the process of
TEX-ing. Although you can perfectly well run TEX directly, it is a fact that oftenmulti-
ple runs are needed as well as that registers need to be sorted. Therefore managing
a job makes sense.

First we had TEXexec and TEXutil, and both were written in Modula, and as this lan-
guage was not supported on all platforms the programs were rewritten in Perl. Fol-
lowing that a fewmore tools were shipped with ConTEXt.

Whenwemovedon toRubyall thePerl scriptswere rewrittenandwhenConTEXtMkIV
showed up, Lua replaced Ruby. As we use LuaTEX this means that currently the tools
and the main program share the same language. For MkII scripts like TEXexec will
stay around but the idea is that there will be Lua alternatives for them as well.

Because we shipped many scripts, and because the de facto standard TEX directory
structure expects scripts to be in certain locations we not only ship tools but also
somemore generic scripts that locate and run these tools.



luatools mtxrun context 2

3 The location
Normally you don’t need to know somany details about where the scripts are located
but here they are:

<texroot>/scripts/context/perl
<texroot>/scripts/context/ruby
<texroot>/scripts/context/lua
<texroot>/scripts/context/stubs

This hierarchywas actually introduced because ConTEXtwas shippedwith a bunch of
tools. Asmentioned, we nowadays focus on Lua but we keep a few of the older scripts
around in the Perl and Ruby paths.Now, if you’re only using ConTEXtMkIV, and this is
highly recommended, you can forget about all but the Lua scripts.

4 The traditional finder
When you run scripts multiple times, and in the case of ConTEXt they are even run
inside other scripts, you want to minimize the startup time. Unfortunately the tra-
ditional way to locate a script, using kpsewhich, is not that fast, especially in a
setup with many large trees Also, because not all tasks can be done with the tradi-
tional scripts (take format generation) we provided a runner that could deal with this:
texmfstart. As this script was also used in more complex workflows, it had several
tasks:

• locate scripts in the distribution and run them using the right interpreter
• do this selectively, for instance identify the need for a run using checksums for

potentially changed files (handy for image conversion)
• pass information to child processes so that lookups are avoided
• choose a distribution among several installed versions (set the root of theTEX tree)
• change the working directory before running the script
• resolve paths and names on demand and launch programswith argumentswhere

names are expanded controlled by prefixes (handy for TEX-unware programs)
• locate and open documentation, mostly as part the help systems in editors, but

also handy for seeing what configuration file is used
• act as a kpsewhich server cq. client (only used in special cases, and using its own

database)

Of course there were the usual more obscure and undocumented features as well.
The idea was to use this runner as follows:

texmfstart texexec <further arguments>



luatools mtxrun context 3

texmfstart --tree <rootoftree> texexec <further arguments>

These are just two ways of calling this program. As texmfstart can initialize the
environment as well, it is basically the only script that has to be present in the binary
path. This is quite comfortable as this avoids conflicts in names between the called
scripts and other installed programs.

Of course calls like above canbewrapped in a shell script or batchfilewithout penalty
as long as texmfstart itself is not wrapped in a caller script that applies other ineffi-
cient lookups. If you use the ConTEXtminimals you can be sure that themost efficient
method is chosen, but we’ve seen quite inefficient call chains elsewhere.

In the ConTEXt minimals this script has been replaced by the one we will discuss in
the next section: mtxrun but a stub is still provided.

5 The current finder

In MkIV we went a step further and completely abandoned the traditional lookup
methods and do everything in Lua. As we want a clear separation between function-
alitywehave twomain controlling scripts: mtxrun and luatools. The last namemay
look somewhat confusing but the name is just one on in a series.1

In MkIV the luatools program is nowadays seldom used. It’s just a drop in for
kpsewhich plus a bit more. In that respect it’s rather dumb in that it does not use
the database, but clever at the same time because it can make one based on the little
information available when it runs. It can also be used to generate format files either
or not using Lua stubs but in practice this is not needed at all.

For ConTEXt users, the main invocation of this tool is when the TEX tree is updated.
For instance, after adding a font to the tree or after updating ConTEXt, you need to
run:

mtxrun --generate

After that all tools will know where to find stuff and how to behave well within the
tree. This is because they share the same code,mostly because they are started using
mtxrun. For instance, you process a file with:

mtxrun --script context <somefile>

1 Wehavectxtools,exatools,mpstools,mtxtools,pdftools,rlxtools,runtools,textools,tmftools
and xmltools. Most if their funtionality is already reimplemented.



luatools mtxrun context 4

Because this happens often, there’s also a shortcut:

context <somefile>

But this doesusemtxrun aswell. Thehelp informationofmtxrun is ratherminimalis-
tic and if you have no cluewhat an option does, you probably never needed it anyway.
Here we discuss a few options. We already saw that we can explicitly ask for a script:

mtxrun --script context <somefile>

but

mtxrun context <somefile>

alsoworks. However, byusing--script you limit te lookup to the validConTEXtMkIV
scripts. In the TEX tree these have names prefixed by mtx- and a lookup look for a
plural as well. So, the next two lookups are equivalent:

mtxrun --script font
mtxrun --script fonts

Both will run mtx-fonts.lua. Actually, this is one of the scripts that youmight need
when your font database is somehow outdated and not updated automatically:

mtxrun --script fonts --reload --force

Normally mtxrun is all you need in order to run a script. However, there are a few
more options:

mtxrun | ConTeXt TDS Runner Tool 1.32
mtxrun |
mtxrun | --script run an mtx script (lua prefered method) (--noquotes), no script gives list
mtxrun | --evaluate run code passed on the commandline (between quotes) (=loop) (exit|quit
aborts)
mtxrun | --execute run a script or program (texmfstart method) (--noquotes)
mtxrun | --resolve resolve prefixed arguments
mtxrun | --ctxlua run internally (using preloaded libs)
mtxrun | --internal run script using built in libraries (same as --ctxlua)
mtxrun | --locate locate given filename in database (default) or system (--first --all
--detail)
mtxrun |
mtxrun | --tree=pathtotree use given texmf tree (default file: setuptex.tmf)
mtxrun | --path=runpath go to given path before execution
mtxrun | --ifchanged=filename only execute when given file has changed (md checksum)
mtxrun | --iftouched=old,new only execute when given file has changed (time stamp)
mtxrun |
mtxrun | --makestubs create stubs for (context related) scripts



luatools mtxrun context 5

mtxrun | --removestubs remove stubs (context related) scripts
mtxrun | --stubpath=binpath paths where stubs wil be written
mtxrun | --windows create windows (mswin) stubs
mtxrun | --unix create unix (linux) stubs
mtxrun | --addbinarypath prepend the (found) binarypath to runners
mtxrun |
mtxrun | --verbose give a bit more info
mtxrun | --trackers=list enable given trackers
mtxrun | --progname=str format or backend
mtxrun | --systeminfo=str show current operating system, processor, etc
mtxrun |
mtxrun | --edit launch editor with found file
mtxrun | --launch launch files like manuals, assumes os support (--all,--list)
mtxrun |
mtxrun | --timedrun run a script and time its run
mtxrun | --autogenerate regenerate databases if needed (handy when used to run context in an
editor)
mtxrun |
mtxrun | --usekpse use kpse as fallback (when no mkiv and cache installed, often slower)
mtxrun | --forcekpse force using kpse (handy when no mkiv and cache installed but less functionality)
mtxrun |
mtxrun | --prefixes show supported prefixes
mtxrun |
mtxrun | --generate generate file database
mtxrun |
mtxrun | --variables show configuration variables
mtxrun | --configurations show configuration order
mtxrun |
mtxrun | --directives show (known) directives
mtxrun | --trackers show (known) trackers
mtxrun | --experiments show (known) experiments
mtxrun |
mtxrun | --expand-braces expand complex variable
mtxrun | --resolve-path expand variable (completely resolve paths)
mtxrun | --expand-path expand variable (resolve paths)
mtxrun | --expand-var expand variable (resolve references)
mtxrun | --show-path show path expansion of ...
mtxrun | --var-value report value of variable
mtxrun | --find-file report file location
mtxrun | --find-path report path of file
mtxrun |
mtxrun | --pattern=string filter variables
mtxrun |
mtxrun |
mtxrun | More information about ConTeXt and the tools that come with it can be found at:
mtxrun |
mtxrun | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtxrun | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net



luatools mtxrun context 6

mtxrun | wiki : http://contextgarden.net

Don’t worry,you only need those obscure features when you integrate ConTEXt in for
instance a web service or when you run large projects where runs and paths take
special care.

6 Updating

There are twoways to update ConTEXtMkIV.When youmanage your trees yourself or
when you use for instance TEXLive, you act as follows:

• download the file cont-tmf.zip from www.pragma-ade.com or elsewhere
• unzip this file in a subtree, for instance tex/texmf-local
• run mtxrun --generate
• run mtxrun --script font --reload
• run mtxrun --script context --make

Or shorter:

• run mtxrun --generate
• run mtxrun font --reload
• run context --make

Normally these commands are not even needed, but they are a nice test if your tree is
still okay. To some extend context is clever enough to decide if the databases need
to be regenerated and/or a format needs to be remade and/or if a new font database
is needed.

Now, if you also want to run MkII, you need to add:

• run mktexlsr
• run texexec --make

The question is, how to act when luatools and mtxrun have been updated them-
selves? In that case, after unzipping the archive, you need to do the following:

• run luatools --selfupdate
• run mtxrun --selfupdate

For quite a while we shipped so called ConTEXt minimals. These zip files contained
only the resources and programs that made sense for running ConTEXt. Nowadays



luatools mtxrun context 7

the minimals are installed and synchronized via internet.2 You can just run the in-
staller again and no additional commands are needed. In the console you will see
several calls to mtxrun and luatools fly by.

7 The tools

We only mention the tools here. The most important ones are context and fonts.
You can ask for a list of installed scripts with:

mtxrun --script

Onmymachine this gives:

mtxrun | ConTeXt TDS Runner Tool 1.32
mtxrun |
mtxrun | no script name given, known scripts:
mtxrun |
mtxrun | babel 1.20 Babel Input To UTF Conversion
mtxrun | base 1.35 ConTeXt TDS Management Tool (aka luatools)
mtxrun | bibtex bibtex helpers
mtxrun | cache 0.10 ConTeXt & MetaTeX Cache Management
mtxrun | chars 0.10 MkII Character Table Generators
mtxrun | check 0.10 Basic ConTeXt Syntax Checking
mtxrun | colors 0.10 ConTeXt Color Management
mtxrun | convert 0.10 ConTeXT Graphic Conversion Helpers
mtxrun | distribution 0.10 ConTeXt Distribution Helpers
mtxrun | dvi 0.10 ConTeXt DVI Helpers
mtxrun | epub 1.10 ConTeXt EPUB Helpers
mtxrun | evohome 1.00 Evohome Fetcher
mtxrun | example 0.10 ConTeXt Example Helpers
mtxrun | fcd 1.00 Fast Directory Change
mtxrun | flac 0.10 ConTeXt Flac Helpers
mtxrun | fonts 0.21 ConTeXt Font Database Management
mtxrun | grep 0.10 Simple Grepper
mtxrun | idris 0.10 Special Hacks For Idris
mtxrun | install 2.00 ConTeXt Installer
mtxrun | interface 0.13 ConTeXt Interface Related Goodies
mtxrun | listen 1.00 ConTeXt Request Watchdog
mtxrun | metapost 0.10 MetaPost to PDF processor
mtxrun | metatex 0.10 MetaTeX Process Management
mtxrun | modules 1.00 ConTeXt Module Documentation Generators
mtxrun | package 0.10 Distribution Related Goodies
mtxrun | patterns 0.20 ConTeXt Pattern File Management

2 This project was triggered byMojcaMiklavecwho is also in charge of this bit of the ConTEXt infrastruc-
ture. More information can be found at contextgarden.net.



luatools mtxrun context 8

mtxrun | pdf 0.10 ConTeXt PDF Helpers
mtxrun | plain 1.00 Plain TeX Runner
mtxrun | profile 1.00 ConTeXt MkIV LuaTeX Profiler
mtxrun | queue 1.00 Sequential runner
mtxrun | rsync 0.10 Rsync Helpers
mtxrun | scite 1.00 Scite Helper Script
mtxrun | server 0.10 Simple Webserver For Helpers
mtxrun | stubs 0.10 ConTeXt Stub Management
mtxrun | swiglib 1.00 ConTeXt Swiglib Updater
mtxrun | synctex 1.00 ConTeXt SyncTeX Checker
mtxrun | tds 0.10 TeX Directory Structure Tools
mtxrun | testsuite 1.00 Experiments with the testsuite
mtxrun | texworks 1.00 TeXworks Startup Script
mtxrun | timing 0.10 ConTeXt Timing Tools
mtxrun | tools 1.01 Some File Related Goodies
mtxrun | tracing 1.00 MkIV LuaTeX Profiler
mtxrun | unicode 1.02 Checker for char-def.lua
mtxrun | unzip 0.10 Simple Unzipper
mtxrun | update 1.03 ConTeXt Minimals Updater
mtxrun | update 1.02 ConTeXt Minimals Updater
mtxrun | vscode vscode extension generator
mtxrun | watch 1.00 ConTeXt Request Watchdog
mtxrun | web 0.10 Some (Private) Webservice Goodies
mtxrun | youless 1.10 YouLess Fetcher

The most important scripts are mtx-fonts and mtx-context. By default fonts are
looked up by filename (the file: prefix before font names in ConTEXt is default). But
you can also lookup fonts by name (name:) or by specification (spec:). If you want
to use these two methods, you need to generate a font database as mentioned in the
previous section. You can also use the font tool to get information about the fonts
installed on your system.

8 Running CONTEXT

The context tool is what you will use most as it manages your run.

mtx-context | ConTeXt Process Management 1.03
mtx-context |
mtx-context | basic options:
mtx-context |
mtx-context | --run process (one or more) files (default action)
mtx-context | --make create context formats
mtx-context |
mtx-context | --ctx=name use ctx file (process management specification)
mtx-context | --noctx ignore ctx directives and flags
mtx-context | --interface use specified user interface (default: en)



luatools mtxrun context 9

mtx-context |
mtx-context | --autopdf close pdf file in viewer and start pdf viewer afterwards
mtx-context | --purge purge files either or not after a run (--pattern=...)
mtx-context | --purgeall purge all files either or not after a run (--pattern=...)
mtx-context |
mtx-context | --usemodule=list load the given module or style, normally part of the distribution
mtx-context | --environment=list load the given environment file first (document styles)
mtx-context | --mode=list enable given the modes (conditional processing in styles)
mtx-context | --path=list also consult the given paths when files are looked for
mtx-context | --arguments=list set variables that can be consulted during a run (key/value pairs)
mtx-context | --randomseed=number set the randomseed
mtx-context | --result=name rename the resulting output to the given name
mtx-context | --trackers=list set tracker variables (show list with --showtrackers)
mtx-context | --directives=list set directive variables (show list with --showdirectives)
mtx-context | --silent=list disable logcatgories (show list with --showlogcategories)
mtx-context | --strip strip Lua code (only meant for production where no errors are expected)
mtx-context | --errors=list show errors at the end of a run, quit when in list (also when --silent)
mtx-context | --htmlerrorpage generate html error page instead (optional: =scite)
mtx-context | --noconsole disable logging to the console (logfile only)
mtx-context | --purgeresult purge result file before run
mtx-context |
mtx-context | --forcexml force xml stub
mtx-context | --forcecld force cld (context lua document) stub
mtx-context | --forcelua force lua stub (like texlua)
mtx-context | --forcemp force mp stub
mtx-context |
mtx-context | --arrange run extra imposition pass, given that the style sets up imposition
mtx-context | --noarrange ignore imposition specifications in the style
mtx-context |
mtx-context | --jit use luajittex with jit turned off (only use the faster virtual machine)
mtx-context | --jiton use luajittex with jit turned on (in most cases not faster, even slower)
mtx-context |
mtx-context | --once only run once (no multipass data file is produced)
mtx-context | --runs process at most this many times
mtx-context | --forcedruns process this many times (permits for optimization trial runs)
mtx-context |
mtx-context | --batchmode run without stopping and do not show messages on the console
mtx-context | --nonstopmode run without stopping
mtx-context |
mtx-context | --nosynctex never initializes synctex (for production runs)
mtx-context | --synctex run with synctex enabled (better use \setupsynctex[state=start]
mtx-context |
mtx-context | --nodates omit runtime dates in pdf file (optional value: a number (this 1970 offset
time) or string "YYYY-MM-DD HH:MM")
mtx-context | --nocompression forcefully turns off compression in the backend
mtx-context | --trailerid alternative trailer id (or constant one)
mtx-context |
mtx-context | --generate generate file database etc. (as luatools does)



luatools mtxrun context 10

mtx-context | --paranoid do not descend to .. and ../..
mtx-context | --version report installed context version
mtx-context |
mtx-context | --global assume given file present elsewhere
mtx-context | --nofile use dummy file as jobname
mtx-context |
mtx-context |
mtx-context | More information about ConTeXt and the tools that come with it can be found at:
mtx-context |
mtx-context | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtx-context | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net
mtx-context | wiki : http://contextgarden.net

There are few expert options too:

mtx-context | ConTeXt Process Management 1.03
mtx-context |
mtx-context | expert options:
mtx-context |
mtx-context | --touch update context version number (also provide --expert, optionally provide
--basepath)
mtx-context | --nostatistics omit runtime statistics at the end of the run
mtx-context | --profile profile job (use: mtxrun --script profile --analyze)
mtx-context | --timing generate timing and statistics overview
mtx-context | --keeptuc keep previous tuc files (jobname-tuc-[run].tmp)
mtx-context | --keeplog keep previous log files (jobname-log-[run].tmp)
mtx-context | --lmtx force lmtx mode (when available)
mtx-context |
mtx-context | --extra=name process extra (mtx-context-... in distribution)
mtx-context | --extras show extras
mtx-context |
mtx-context | special options:
mtx-context |
mtx-context | --pdftex process file with texexec using pdftex
mtx-context | --xetex process file with texexec using xetex
mtx-context | --mkii process file with texexec
mtx-context |
mtx-context | --pipe do not check for file and enter scroll mode (--dummyfile=whatever.tmp)
mtx-context |
mtx-context | --sandbox process file in a limited environment
mtx-context |
mtx-context | --addbinarypath prepend the (found) binarypath to runners
mtx-context |
mtx-context |
mtx-context | More information about ConTeXt and the tools that come with it can be found at:
mtx-context |
mtx-context | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtx-context | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net



luatools mtxrun context 11

mtx-context | wiki : http://contextgarden.net

Youmight as well forget about these unless you are one of the ConTEXt developers.

9 Prefixes
A handy feature of mtxrun (and as most features an inheritance of texmfstart) is
that it will resolve prefixed arguments. This can be of help when you run programs
that are unaware of the TEX tree but nevertheless need to locate files in it.

mtxrun | ConTeXt TDS Runner Tool 1.32
mtxrun |
mtxrun |
mtxrun | auto: env: environment: file: filename: full: home: jobpath: kpse: loc: locate: machine: nodename:
path: pathname: rel: relative: release: selfautodir: selfautoloc: selfautoparent: sysname: toppath: version:

An example is:

mtxrun --execute xsltproc file:whatever.xsl file:whatever.xml

The call to xsltproc will get two arguments, being the complete path to the files
(given that it can be resolved). This permits you to organize the files in a similar was
as TEX files.

10 Stubs
As the tools are written in the Lua language we need a Lua interpreter and of course
we use LuaTEX itself. OnUnixwe can copy luatools and mtxrun to files in the binary
path with the same name but without suffix. Starting them in another way is a waste
of time, especially when kpsewhich is used to find then, something which is useless
in MkIV anyway. Just use these scripts directly as they are self contained.

For context and other scripts that we want convenient access to, stubs are needed,
like:

#!/bin/sh
mtxrun --script context "$@"

This is also quite efficient as the context script mtx-context is loaded in mtxrun
and uses the same database.

On Windows you can copy the scripts as-is and associate the suffix with LuaTEX (or
more precisely: texlua) but then all Lua script will be run that way which is not what
youmight want.



luatools mtxrun context 12

In TEXLive stubs for starting scripts were introduced by Fabrice Popineau. Such a
stub would start for instance texmfstart, that is: it located the script (Perl or Ruby)
in the TEX tree and launched it with the right interpreter. Later we shipped pseudo
binaries oftexmfstart: aRuby interpreterplus scriptswrapped into a self contained
binary.

For MkIV we don’t need such methods and started with simple batch files, similar to
the Unix startup scripts. However, these have the disadvantage that they cannot be
used in other batch files without using the start command. In TEXLive this is taken
care of by a small binary written bij T.M. Trzeciak so on TEXLive 2009 we saw a call
chain from exe to cmd to luawhich is somewhat messy.

This is whywe now use an adapted and stripped down version of that program that is
tuned for mtxrun, luatools and context. So, wemoved from the original cmd based
approach to an exe one.

mtxrun.dll
mtxrun.exe

You can copy mtxrun.exe to for instance context.exe and it will still use mtxrun
for locating the right script. It also takes care of mapping texmfstart to mtxrun. So
we’ve removed the intermediate cmd step, can run the script as any program, and
most of all, we’re as efficient as can be. Of course this program is onlymeaningful for
the ConTEXt approach to tools.

It may all soundmore complex than it is but once it works users will not notice those
details. Also, in practice not that much has changed in running the tools between
MkII and MkIV as we’ve seen no reason to change the methods.

11 A detailed look at mtxrun
This section is derived from Taco Hoekwaters presentation and article for the 2018
ConTEXt meeting. You might want to read this is you want to benefit from even the
most obscure features. There is a bit of repetition with the previous sections but so
be it.

11.1 Common flags

Muchof the code insideMkIV can alter its behaviour based on either ‘trackers’ (which
add debugging information to the terminal and log output) or ‘directives’ or ‘experi-
ments’ (for getting code to perform some alternate behaviour). Since this also affects
the Lua code within mtxrun itself, it makes sense to list these options first.



luatools mtxrun context 13

Trackers enable more extensive status messages on the console or in ConTEXt addi-
tional visual clues. Directives change behaviour that is not part of the official inter-
face and have no corresponding commands. Experiments are like directives but not
official (yet).

--trackers
show (known) trackers

--directives
show (known) directives

--experiments
show (known) experiments

Enabling directives, trackers and experiments:

--trackers=list
enable given trackers

--directives=list
enable given directives

--experiments=list
enable given experiments

The next tree (hidden) options are converted into ‘directives’ entries, that are then
enabled. These are just syntactic sugar for the relevant directive.

--silent[=...]
sets logs.blocked={\%s}

--errors[=...]
sets logs.errors={\%s}

--noconsole
sets logs.target=file

As you can see here, various directives (and even some trackers) have optional argu-
ments,whichcanmakespecifying suchdirectiveson thecommand lineabit of a chal-
lenge. Explaining the details of all the directives is outside of the scope of this article,
but you can look them up in the ConTEXt source by searching for directives.reg-
ister and trackers.register.

In verbose mode, mtxrun itself gives more messages, and it also enables re-
solvers.locating, which is a tracker itself:



luatools mtxrun context 14

--verbose
give a bit more info

The --timedlog (hidden) option starts the mtxrun output with a timestamp line:

--timedlog
prepend output with a timestamp

11.2 Setup for finding files and configurations
The next block of options deals with the setup of mtxrun itself. You do not need to
dealwith these options unless you aremessingwith theConTEXt distribution yourself
instead of relying on a prepackaged solution, or you need to use kpathsea for some
reason (typically in a MkII environment). In particular, --progname and --tree are
often needed as well when using the kpse options.

--configurations
show configuration order, alias --show-configurations

--resolve
resolve prefixed arguments, see --prefixes, below

and:

--usekpse
use kpse as fallback (when no MkIV and cache installed, often slower)

--forcekpse
force using kpse (handy when no MkIV and cache installed but less functionality)

--progname=str
format or backend

--tree=pathtotree
use given texmf tree (default file: setuptex.tmf)

We don’t provide such a .tmf file in the distribution.

11.3 Options for finding files and reporting configura-
tions

Once the configuration setup is done, itmakes sense to have a bunch of options to use
and/or query the configuration.



luatools mtxrun context 15

--locate
locate given filename in database (default) or system (uses the sub--options
--first, --all and --detail)

--autogenerate
regenerate databases if needed (handy when used to run context in an editor)

--generate
generate file database

--prefixes
show supported prefixes for file searches

--variables
show configuration variables (uses the sub--option --pattern, and an alias is
--show-variables)

--expansions
show configuration variable expansion (uses the sub--options --pattern, alias
--show-expansions)

--expand-braces
expand complex variable

--resolve-path
expand variable (completely resolve paths)

--expand-path
expand variable (resolve paths)

--expand-var
expand variable (resolves references inside variables, alias
--expand-variable)

--show-path
show path expansion of ... (alias --path-value)

--var-value
report value of variable (alias --show-value)



luatools mtxrun context 16

--find-file
report file location; it uses the sub--options --all, --pattern, and --format

--find-path
report path of file

Hidden option:

--format-path
report format path

11.4 Running code

Herewe come to the core functionality ofmtxrun: running scripts. First there are few
options that trigger how the running takes place:

--path=runpath
go to given path before execution

--ifchanged=filename
only execute when given file has changed (this loads and saves anmd5
checksum from filename.md5)

--iftouched=old,new
only execute when given file has changed (time stamp)

--timedrun
run a script or program and time its run (external)

Specifying both --iftouched and --ifchanged means both are tested, and when
either one is false, nothingwill happen. These options have to come before one of the
next options:

--script
run anmtx script (where Lua is the preferred method); it has the sub--options
--nofiledatabase, --autogenerate, --load, and --save. The latter two are
currently no-ops



luatools mtxrun context 17

--execute
run a script or program externally (texmfstartmethod); it has sub--option
--noquotes

--internal
run a script using built-in libraries (alias is --ctxlua)

--direct
run an external program; it has the sub--option --noquotes

Since scripts potentially have their own options, any options intended for mtxrun it-
self have to come before the option that specifies the script to run, and options for the
script itself have to come after the option that gives the script name. This is especially
true when using --script, so it is important to check the order of your options.

Of the four above options, --script is the most important one, since that is the one
that finds and executes the Lua mtxrun scripts provided by the distribution. With
--nofiledatabase, it will not attempt to resolve any file names (which means you
need either a local script or a full path name). On the opposite side, when you also
provide --autogenerate, it will not only attempt to resolve the file name, it will also
regenerate thedatabase if it cannotfind thescript on thefirst try. Ina futureversionof
ConTEXt, the --load and --savewill allow you to save/restore the current command
line in a file for reuse.

The shell return value of mtxrun indicates whether the script was found. When you
specify something like--script base,mtxrunactually searches formtx-base.lua,
mtx-bases.lua, mtx-t-base.lua, mtx-t-bases.lua, and base.lua, in that or-
der. The distribution--supplied scripts normally use mtx-<name>.lua as template.
The template names with mtx-t- prefix is reserved for third--party scripts, and
<name>.lua is just a last-ditch effort if nothing else works. Scripts are looked for
in the local path, and in whatever directories the configuration variable LUAINPUTS
points to.

The --execute option exists mostly for the non--Lua MkII scripts that still exist in
the distribution. It will try to find a matching interpreter for non--Lua scripts, and it
is awareof anumberofdistribution--supplied scripts so that if youspecify--execute
texexec, it knows thatwhat you reallywant to execute isruby texexec.rb. Support
is present for Ruby (.rb, Lua (.lua), python (.py) and Perl (.pl) scripts (tested in that
order). File resolving uses TEXMFSCRIPTS from the configuration. The shell return
value of mtxrun indicates whether the script was found and executed.

The --internal option uses the file searchmethod of --execute, but then assumes
this is a Lua script and executes it internally like --script. This is useful if you have
a Lua script in an odd location.



luatools mtxrun context 18

The last of the four options, --direct, directly executes an external program. You
need to give the full path for binaries not in the current shellPATH, becauseno search-
ing is done at all. The shell return value of mtxrun in this case is a boolean based on
the return value of os.exec().

It is also possible to execute bare Lua code directly:

--evaluate
run code passed on the command-line (between quotes)

11.5 Options for maintenance of mtxrun itself

None of these are advertised. Normally developers should be the only ones needing
them, but if you made a change to one of the distributed libraries (maybe because of
a beta bug), youmay need to run --selfmerge and --selfupdate.

--selfclean
remove embedded libraries

--selfmerge
update embedded libraries in mtxrun.lua

--selfupdate
copy mtxlua.lua to the executable directory, renamed mtxrun

11.6 Creating stubs

Stubsare little shortcuts that live in somebinariesdirectory. Forexample, thecontent
of the Unix--style context shell command is:

#!/bin/sh
mtxrun --script context "$@"

Apart fromthecontext command itself (which isprovidedby thedistribution), useof
stubs is discouraged. Still, the mtxrun options are there because sometimes existing
workflows depend on executable tool names like ctxtools.



luatools mtxrun context 19

--makestubs
create stubs for (context related) scripts

--removestubs
remove stubs (context related) scripts

--stubpath=binpath
paths where stubs will be written

--windows
create windows (mswin) stubs (alias --mswin)

--unix
create unix (linux) stubs (alias --linux)

11.7 Remaining options

The remaining options are hard to group into a subcategory. These are the advertised
options:

--systeminfo
show current operating system, processor, et cetera

--edit
launch editor with found file; the editor is taken from the environment variable
MTXRUN_EDITOR, or TEXMFSTART_EDITOR, or EDITOR, or as a last resort: gvim

--launch
launch files like manuals, assumes os support (uses the sub--options --all,
--pattern and --list)

While these are sort of hidden options:

--ansi
colorize output to terminal using ansi escapes

--associate
launch files like manuals, assumes os support. this function does not do any file
searching, so you have to use either a local file or a full path name



luatools mtxrun context 20

--exporthelp
output the mtxrun xml help blob (useful for creating man and html help pages)

--fmt
shortcut for --script base --fmt

--gethelp
attempt to look up remote context command help (uses the sub--options
--command and --url)

--help
print the mtxrun help screen

--locale
force setup of locale; unless you are certain you need this option, stay away from
it, because it can interfere massively with ConTEXt’s Lua code

--make
(re)create format files (aliases are --ini and --compile)

--platform
(alias is --show-platform)

--run
shortcut for --script base --run

--version
print mtxrun version

11.8 Known scripts

When you run mtxrun --scripts, it will output a list of ‘known’ scripts. The defini-
tion of ‘known’ is important here: the list comprises the scripts that are present in the
same directory as mtx-context.lua that do not have an extra hyphen in the name
(likemtx-t-...scriptswouldhave). In anormal installation, thismeans it ‘knows’ al-
most all the scripts that aredistributedwithConTEXt. Note: it skipsover anyfiles from
the distribution that do have an extra hyphen, like the mtx-server support scripts.

Since this section is about mtxrun, I’ll just present the list of the scripts that are
‘known’ in the current ConTEXt beta as output by mtxrun itself, and not get into detail
about all of the script functionality (they all have --help options if you want to find
out more). Where we still felt the need to explain something, there is an extra bit of
text in italics.



luatools mtxrun context 21

babel
Babel Input To UTF Conversion

base
ConTeXt TDS Management Tool (aka luatools)

bibtex
bibtex helpers (obsolete)

cache
ConTeXt & MetaTeX Cache Management

chars
MkII Character Table Generators

check
Basic ConTeXt Syntax Checking

Occasionally useful on big projects, but be warned that it does not actually run any TEX
engine, so it is not 100% reliable.

colors
ConTeXt Color Management

This displays icc color tables by name

convert
ConTeXT Graphic Conversion Helpers

A wrapper around ghostscript and imagemagick that offers some extra (batch processing)
functionality.

dvi
ConTeXt DVI Helpers

epub
ConTeXt EPUB Helpers

The EPUB manual (epub-mkiv.pdf) explains how to use this script.



luatools mtxrun context 22

evohome
Evohome Fetcher

Evohome is a domotica system that controls your central heating

fcd
Fast Directory Change

flac
ConTeXt Flac Helpers

Extracts information from .flac audio files into an xml index.

fonts
ConTeXt Font Database Management

grep
Simple Grepper

interface
ConTeXt Interface Related Goodies

metapost
MetaPost to PDF processor

metatex
MetaTeX Process Management (obsolete)

modules
ConTeXt Module Documentation Generators

package
Distribution Related Goodies

This script is used to create the generic ConTEXt code used in LuaLATEX c.s.

patterns
ConTeXt Pattern File Management

Hyphenation patterns, that is . . .



luatools mtxrun context 23

pdf
ConTeXt PDF Helpers

plain
Plain TeX Runner

profile
ConTeXt MkIV LuaTeX Profiler

rsync
Rsync Helpers

scite
Scite Helper Script

server
Simple Webserver For Helpers

There are some subscripts associated with this.

synctex
ConTeXt SyncTeX Checker

texworks
TeXworks Startup Script

timing
ConTeXt Timing Tools

tools
Some File Related Goodies

unicode
Checker for char-def.lua

unzip
Simple Unzipper

update
ConTeXt Minimals Updater



luatools mtxrun context 24

watch
ConTeXt Request Watchdog

youless
YouLess Fetcher

YouLess is a domotica system that tracks your home energy use.

11.9 Writing your own

Awell-written script has some required internal structure. It should startwith amod-
ule definition block. This gives some information about themodule, butmore impor-
tantly, it prevents double-loading.

Here is an example:

if not modules then modules = { } end

modules ['mtx-envtest'] = {
version = 0.100,
comment = "companion to mtxrun.lua",
author = "Taco Hoekwater",
copyright = "Taco Hoekwater",
license = "bsd"

}

Nextup isavariable containing thehelp information. Thehelp information is actually
a bit of xml stored in Lua string. In the full example listing at the end of this article,
you can see what the internal structure is supposed to be like.

local helpinfo = [[
<?xml version="1.0"?>
<application>
....

</application>
]]

And this help information is then used to create an instance of anapplication table.

local application = logs.application {
name = "envtest",
banner = "Mtxrun environment demo",



luatools mtxrun context 25

helpinfo = helpinfo,
}

After this call, the application table contains (amongst some other things) three
functions that are very useful:

identify()
Prints out a banner identifying the current script to the user.

report(str)
For printing information to the terminal with the script name as prefix.

export()
Prints the helpinfo to the terminal, so it can easily be used for documentation
purposes.

Next up, it is good to define your scripts’ functionality in functions in a private table.
This prevents namespace pollution, and looks like this:

scripts = scripts or { }
scripts.envtest = scripts.envtest or { }

function scripts.envtest.runtest()
application.report("script name is " .. environment.ownname)

end

And finally, identify the current script, followed by handling the provided options
(usually with an if--else statement).

if environment.argument("exporthelp") then
application.export()

elseif environment.argument('test') then
scripts.envtest.runtest()

else
application.help()

end

11.10 Script environment

mtxrun includes lots of the internal Lua helper libraries from ConTEXt. We actually
maintain a version of the script without all those libraries included, and before every



luatools mtxrun context 26

(beta) ConTEXt release, an amalgamated version of mtxrun is added to the distribu-
tion. In themergingprocess, all comments are stripped from the embedded libraries,
so if you want to know details, it is better to look in the original Lua source file.

Inside mtxrun, the full list of embedded libraries can be queried via the array
own.libs:

l-lua.lua l-macro.lua l-sandbox.lua l-package.lua l-lpeg.lua l-function.lua l-
string.lua l-table.lua l-io.lua l-number.lua l-set.lua l-os.lua l-file.lua l-gzip.lua l-
md5.lua l-url.lua l-dir.lua l-boolean.lua l-unicode.lua l-math.lua util-str.lua util-
tab.lua util-fil.lua util-sac.lua util-sto.lua util-prs.lua util-fmt.lua trac-set.lua trac-
log.lua trac-inf.lua trac-pro.lua util-lua.lua util-deb.lua util-tpl.lua util-sbx.lua util-
mrg.lua util-env.lua luat-env.lua lxml-tab.lua lxml-lpt.lua lxml-mis.lua lxml-aux.lua
lxml-xml.lua trac-xml.lua data-ini.lua data-exp.lua data-env.lua data-tmp.lua data-
met.lua data-res.lua data-pre.lua data-inp.lua data-out.lua data-fil.lua data-con.lua
data-use.lua data-zip.lua data-tre.lua data-sch.lua data-lua.lua data-aux.lua data-
tmf.lua data -lst.lua util-lib.lua luat-sta.lua luat-fmt.lua

In fact, the Lua table own contains some other useful stuff like the script’s actual disk
name and location (own.name and own.path) and some internal variables like a list
of all the locations it searches for its embedded libraries (own.list), which is used by
the --selfmerge option and also allows the non--amalgamated version to run (since
otherwise --selfmerge could not be bootstrapped).

mtxrunoffers aprogrammingenvironment thatmakes it easy towrite Lua script. The
most important element of that environment is a Lua table that is conveniently called
environment (util-env does the actual work of setting that up).

The bulk of environment consists of functions and variables that deal with the com-
mand--line given by the user as mtxrun does quite a bit of work on the given com-
mand--line. The goal is to safely tuck all the given options into the arguments and
files tables. This work is done by two functions called initializearguments()
and splitarguments(). These functions are part of the environment table, but you
should not need them as they have been called already once control is passed on to
your script.

arguments
These are the processed options to the current script. The keys are option
names (without the leading dashes) and the value is either true or a string with
one level of shell quotes removed.



luatools mtxrun context 27

files
This array holds all the non--option arguments to the current script. Typically,
those are supposed to be files, but they could be any text, really.

getargument(name,partial)
Queries the arguments table using a function. Its main reason for existence is
the partial argument, which allows scripts to accept shortened command--line
options (alias: argument()).

setargument(name,value)
Sets a value in the arguments table. This can be useful in complicated scripts
with default options.

In case you need access to the full command--line, there are some possibilities:

arguments_after
These are the unquoted but otherwise unprocessed arguments to your script as
an array.

arguments_before
These are the unquoted but otherwise unprocessed arguments to mtxrun before
your scripts’ name (so the last entry is usually --script).

rawarguments
This is the whole unprocessed command--line as an array.

originalarguments
Like rawarguments, but with some top--level quotes removed.

reconstructcommandline(arg,noquote)
Tries to reconstruct a command--line from its arguments. It uses
originalarguments if no arg is given. Take care: due to the vagaries of shell
command--line processing, this may or may not work when quoting is involved.

environment also stores various bits of information youmay find useful:

validengines
This table contains keys for luatex and luajittex. This is only relevant when
mtxrun itself is called via LuaTEX’s luaonly option.



luatools mtxrun context 28

basicengines
This table maps executable names to validengines entries.

default_texmfcnf
This is the texmfcnf value from kpathsea, processed for use with MkIV in the
unlikely event this is needed.

homedir
The user’s home directory.

ownbin
The name of the binary used to call mtxrun.

ownmain
Themapped version of ownbin.

ownname
Full name of this instance of mtxrun.

ownpath
The path this instance of mtxrun resides in.

texmfos
Operating system root directory path.

texos
Operating system root directory name.

texroot
ConTEXt root directory path.

As well as some functions:

texfile(filename)
Locates a TEX file.

luafile(filename)
Locates a Lua file.

loadluafile(filename,version)
Locates, compiles and loads a Lua file, possibly in compressed .luc format. In
the compressed case, it uses the version to make sure the compressed form is
up--to--date.



luatools mtxrun context 29

luafilechunk(filename,silent,macros)
Locates and compiles a Lua file, returning its contents as data.

make_format(name,arguments)
Creates a format file and stores it in the ConTEXt cache, used by mtxrun --make.

relativepath(path,root)
Returns a modified version of root based on the relative path in path.

run_format(name,data,more)
Run a TEX format file.

11.11 Shell return values

As explained earlier, the shell return value of mtxrun normally indicates whether
the script was found. If you are running a ConTEXt release newer than September
2018 and want to modify the shell return value from within your script, you can use
os.exitcode. Whatever valueyouassign to that variablewill be the shell returnvalue
of your script.

Colofon

author Hans Hagen, PRAGMA ADE, Hasselt NL
Taco Hoekwater, extra mtxrun section

version March 4, 2020
website www.pragma-ade.nl – www.contextgarden.net
copyright c b a n


