
Adding Text

to Graphics



1

Introduction

This is short manual about adding text to graphics made by other applications than

TEX. Early versions of ConTEXt already had provisions for adding information to graph-

ics. The \start...\stopfigure environment provides a way to add text and hyper-

links to graphics based on a grid. We used this feature to create interactive maps,

navigate using diagrams and alike. The corresponding definitions are stored per

graphic, and can be managed independently from the main text.

The method described in this document reimplements this feature in a more flexible

way using a couple of features not present at that time. Also, the new method is

more suited to handle information stored in database like the figure and resource

databases supported by ConTEXt. In due time the old mechanism will be replaced by

(i.e. redefined in) the new one.

The reason for extending the figure database concept with this kind of information

is that the people responsible for the content (text) are not always the same as those

making the graphics. In some of our projects, authors are supposed to add text (here

called labels) to graphics. The same graphic can be used in more than one context,

with different labels. Think for instance of a graphic that is used in a question without

labels, but in an answer with labels. Or consider the same graphic being used in a

Dutch and English document.

One handicap in separating graphic design and writing text is that both the graphic

designer and the author must make sure that they know where the information ends

up. Graphic designers use professional drawing packages that authors don’t have

access to, or demand in--depth knowlegde of the application. Authors on the other

hand know how to use TEX to typeset math, and drawing applications seldom provide

proper support for math. Separating drawing the graphic and defining the labels also

has the advantage that the labels can be typeset in a way that suits the document style

(and specifically the fonts that are used).

Although maintaining label specific data, like for instance the locations where labels

have to end up, is possible as an independent activity, it may give the artist an uneasy

feeling, especially because he is used to click and point tools. Therefore we will also

discuss how to interface to Adobe Illustrator, a popular drawing application.

Grids

Imagine that we have the following graphic defined in a drawing program.



2

If you want to add some texts to this graphic, you need to know where these should

be anchored. One way to achieve this is to put an imaginary grid on top of the graphic

and anchor labels at fixed positions. Because graphics can be included at different

sizes, such a grid may change accordingly. Imagine that you would have to define

labels using the grids of the following graphics.

natural size scaled 75% scaled 130%

In practice you will define points on a fixed grid layed over the graphic scaled at 100%.

In that case the grid will scale with the graphic.

natural size scaled 75% scaled 130%



3

Most drawing programs put their reference points in the lower left corner. This makes

sense since that suits traditional coordinate systems. However, in a text flow it makes

more sense to think top--down.

top anchored bottom anchored

The labeling mechanism described here works bottom up, which is opposite to the

default top--down placement in ConTEXt text layers.

Adding text labels

This is a preliminary description. Multiple language and label sets will be discussed

as soon as we consider the interface stable. We will also support other interfaces and

ways of positioning.

If you have to figure out the positions on your own, the following method can be used

to add labels to a graphic.

\startfigurelabels[labels-1]

\definefigurelabel[x=25bp,y=45bp]{\bfd\white A}

\definefigurelabel[x=70bp,y=30bp]{\bfd\white B}

\definefigurelabel[x=60bp,y=75bp]{\bfd\white C}

\stopfigurelabels

The graphic itself is placed in the usual way:

\startlinecorrection[blank]

\externalfigure[labels-1.mps][option=label]

\stoplinecorrection



4

A
B

C

or:

\placefigure

{A floating figure}

{\externalfigure[labels-1.mps][option=label,width=3cm]}

A B

C
A B

C

Figure 1 A floating figure

Although we limit ourselves here to simple labels, you can in principle put anything

reasonable in a label.

Using symbolic positions

Especially when a graphic is used more than once with different labels, or when the

task of defining the anchors can be delegated to the graphic designer, the separation

between defining anchors and texts comes into view.

Each anchor gets a label (in its simplest form a number) and the positions are stored

in a database. A record (which itself can be part of a figure (resource) library).

[testen: pos in fig database]

<rl:textlabels label="labels-2">

<rl:textlabel label="1" x="25" y="50"/>

<rl:textlabel label="2" x="50" y="25"/>

<rl:textlabel label="3" x="75" y="50"/>

<rl:textlabel label="4" x="50" y="75"/>

</rl:textlabels>



5

Here we have defined 4 positions that belong to figure labels-2.

\startlinecorrection[blank]

\externalfigure[labels-2.mps][option=label]

\stoplinecorrection

l=1

l=2

l=3

l=4

It is possible to combine external and internal definitions, so you can use an external

xml position database and define the label texts in the document itself. The label text

definitions can be given in a TEX syntax or in xml.

The database can also contain the text labels themselves, like:

<rl:textlabels label="labels-2">

<rl:textlabel label="1">A</rl:textlabel>

<rl:textlabel label="2">B</rl:textlabel>

<rl:textlabel label="3">C</rl:textlabel>

<rl:textlabel label="4">D</rl:textlabel>

</rl:textlabels>

A

B

C

D

If the source document is a normal TEX document, you can include the definitions in

your file.

\startfigurelabels[labels-2]

\definefigurelabel[1]{\bfd\white A}

\definefigurelabel[2]{\bfd\white B}

\definefigurelabel[3]{\bfd\white C}

\definefigurelabel[4]{\bfd\white D}

\stopfigurelabels



6

A
B

C
D

You can add additional labels. If needed you can provide your own coördinates.

\startfigurelabels[labels-2]

\definefigurelabel[x=50bp,y=50bp]{\bfd\white E}

\definefigurelabel[1]{\bfd\red\symbol[star]}

\stopfigurelabels

A
B

C
D
E?

If you want a fresh start, you should explicitly reset the data with the reset command.

We use this options to show you the alternative alignment locations (these are the

same as in the ConTEXt layer mechanism).

\resetfigurelabels[labels-2]

\startfigurelabels[labels-2]

\definefigurelabel[1][location=l]{l}

\definefigurelabel[2][location=r]{r}

\definefigurelabel[3][location=t]{t}

\definefigurelabel[4][location=b]{b}

\stopfigurelabels

l

r

t

b



7

\resetfigurelabels[labels-2]

\startfigurelabels[labels-2]

\definefigurelabel[1][location=lt]{lt}

\definefigurelabel[2][location=lb]{lb}

\definefigurelabel[3][location=rt]{rt}

\definefigurelabel[4][location=rb]{rb}

\stopfigurelabels

lt

lb

rt

rb

Adobe Illustrator files

The WARM plugin of Adobe Illustrator gives you the means to tag positions in a

graphic. This plug--in is an initiative by Ross Moore and Wendy Mackay. The WARM

plug--in writes special comment--only PostScript files. This means that we don’t have

to ask graphic artists to use text base tools for providing the positional information.

The positions are normally numbered, but you can give them meaningful names.

These positions are saved in files with the suffix bb. In Illustrator, these positions are

named marked points. The data segment of such a file looks as follows:

%%StartMarkedPoints

%%MarkedPoint: (60,30) : point(0,0) : 1 % Default Text

%%MarkedPoint: (55,70) : point(0,0) : 2 % Default Text

%%MarkedPoint: (40,40) : point(0,0) : 3 % Default Text

%%EndMarkedPoints

For our purpose, Only the coordinate (first entry) and label (third entry) make sense.

There can best be some logic in placing the points, especially since we have to align

the labels manually. When applied to our graphic, the previous definitions result in

the following label anchors.



8

l=1

l=2

l=3

natural size

l=1

l=2

l=3

scaled 75%

l=1

l=2

l=3

scaled 125%

As you can see, the positions are scaled with the graphic, but the same bb is used for

each of them.

l=1,x=60,y=30

l=2,x=55,y=70

l=3,x=40,y=40

natural size

l=1,x=60,y=30

l=2,x=55,y=70

l=3,x=40,y=40

scaled 75%

l=1,x=60,y=30

l=2,x=55,y=70

l=3,x=40,y=40

scaled 125%

We define some labels:

\startfigurelabels[labels-1]

\definefigurelabel[1][location=r]{kwik}

\definefigurelabel[2][location=r]{kwek}

\definefigurelabel[3][location=l]{kwak}

\stopfigurelabels

These show up as follows. Watch how we aligned them left and right of the anchor

point.



9

kwik

kwek

kwak

natural size

kwik

kwek

kwak

scaled 75%

kwik

kwek

kwak

scaled 125%

Internally, TEX works with real points, like 12pt, but if needed you can define positions

in PostScript points, like 12bp. Watch out: these are not the same, although for

applications like these the difference does not show of that fast.

l=1,x=60.22499pt,y=30.11249pt

l=2,x=55.20624pt,y=70.2625pt

l=3,x=40.15pt,y=40.15pt

It is quite possible that the author wants to put a couple of extra labels in a graphic.

\startfigurelabels[labels-1]

\definefigurelabel[x=50bp,y=50bp]{kwok}

\stopfigurelabels

The entries are added to the already defined ones; if you want to start fresh, you

should explicitly reset the label texts with:

\resetfigurelabels[labels-1]



10

kwik

kwek

kwak
kwok

natural size

kwik

kwek

kwak
kwok

scaled 75%

kwik

kwek

kwak
kwok

scaled 125%

The WARM method is hooked into the external figure mechanism as (optional) sec-

ond step in resolving layers. This means that an existing xml definition (file) takes

precedence. In any case, the way to invoke this feature is the same:

\externalfigure[name][option=label]

In combination with previously defined labels this will give you labeled figures, given

that a bb file is present. You can convert such files to an xml file using the bbtoxml

Perl script. The generated base can be registered by saying:

\usefigurelabelbase[reset] \usefigurelabelbase[bbtoxml]



PRAGMA

Advanced Document Engineering Ridderstraat 27 8061GH Hasselt NL

tel: +31 (0)38 477 53 69 email: pragma@wxs.nl internet: www.pragma-ade.com


