
EVEN
MORE

fun with
luametatex
and context

1

2

Table of contents

1 Introduction 4

2 TEX and Pi 6

3 Modern Type 3 fonts 8

4 ThreeSix, Don Knuths first colorfont? 20

5 Normalization 32

6 Expansion 44

7 Macros 48

8 Libraries 50

9 Is LUAMETATEX still TEX? 54

10 Numbers 58

11 Parameters 64

12 Parsing 72

13 Tokens 78

14 Keywords 90

3

Introduction 4

1 Introduction

After five collections of ‘articles’ about the development of LuaTEX, ConTEXt MkIV, LuaMetaTEX and Con-
TEXt lmtx, there is even more to tell so here is number six. Wrapping up not only serves to inform the
users but for me it is also a way to get things right: if you cannot write it down it’s no good. It forcesme to
(re)consider interfaces and also test new code but of course it comes with no guarantees.

Whenwriting this introduction I just finished the first chapter, about some new font stuff, as follow up on
the (again) nice ConTEXt meeting in 2019. It’s always inspiring to meet and talk with my TEX friends and
see what they’re doing. It keeps me going.

Somechapters endup inuser group journalsfirst so theywill be addedonce theyhavebeenpublishedand
are available. The advantage is that these are then copy-edited. Many texts, also in previous development
updates, got better because Karl Berry checked them thoroughly for TUGboat, for which I’m grateful.

Hopefully, this document serves a purpose.

Hans Hagen
PRAGMA ADE, Hasselt NL
Started in October 2019

5 Introduction

TEX and Pi 6

2 TEX and Pi

This is a short status report1 on Pi, not the famous version number of TEX (among other things), but the
smallmachine,meant for education but nowadays also used for Internet Of Things projects, process con-
trol and toy projects. While the majority of TEX installations run on an Intel processor, the Raspberry Pi
has an armcentral processingunit. In fact, itsmain chiphas the same foundation as those found in settop
boxes all around the world. It’s made for entertainment, not for number crunching.

At the ConTEXt meetings, it has become tradition to play with electronic gadgets. Every year we are cu-
rious what Harald König might bring this time. The last couple of meetings we also had talks about us-
ing TEX andMetaPost for designing (home-scale, automated) railroad systems, using LuaTEX for running
domotica applications, using MetaPost for rendering high quality graphics from data from appliances,
presenting TEX at computer and electronics bootcamps, andmore. This year Frans Goddijn also brought
back memories of low speed modem sounds, from the early days of TEX support. It is these things that
make the meetings fun.

This year themeeting was in Belgium, close to the border of the Netherlands, and on the way thereMojca
Miklavec traveled via my home, where the contextgarden compile farm runs on a server with plenty of
cores, lots of memory and big disks. But the farm also has an old Mac connected as well as a tiny under-
powered Raspberry Pi 2 for armbinaries that we had to fix: the smallmicro ssd card in it had finally given
up. This is no surprise if you realize that it does a daily compilation of the whole TEX Live setup and also
compiles LuaTEX, LuaMetaTEX and pplib when changes occur. Replacing the card worked out but never-
theless we decided to take the small machine with us to the meeting. We also took an external (2.5 inch)
ssd box with us. The idea was to order a Raspberry Pi 4 on location, the much praised successor of the
older models, the one with 4 GB of memory, real usb 3 ports and proper Ethernet.

At themeetingHarald showedus that hehadversion1, 3 and4machineswithhimbecausehewas looking
into an energy control setup based on Zigbee devices. So we had the full range of Pi’s there to play with.

This is a long introduction but themessage is that we are dealing with a small but popular device with up
to now four generations, using an architecture supported in TEX distributions. So how does that relate to
ConTEXt? One of the reasons for LuaMetaTEX going lean andmean is that computers are no longer getting
much faster and ‘multiple small’ energy-wise has more appeal than ‘one large’. So then the question is:
how canwemake TEX run fast on small instead of gambling on big becoming even bigger (which does not
seem to be happening anyway).

At the meeting Harald gave a talk “Which Raspberry Pi is the best for ConTEXt?” and I will use his data to
give an overview: see Table ??rpispec.

model 1 2 3 4
chipset BCM2835 BCM2835 BCM2835 BCM2835
CPU core v6l rev 7 v7l rev 5 v7l rev 4 v7l rev 3
cores 1 4 4 4
free mem 443080 948308 948304 3999784
idlemips 997.08 38.40 38.40 108.00
bogomips 997.08 57.60 76.80 270.00
read SD 23.0 MB/s 23.2 MB/s 23.2 MB/s 45.1 MB/s
read USB 30.0 MB/s 30.0 MB/s 320.0 MB/s

1 This chapter appeared in TugBoat 40:3. Thanks to Karl Berry for corrections.

7 TEX and Pi

After some discussion at the presentation we decided to discard the (absurd) bogomips value for the tiny
Pi 1 computing board and not take the values for the others too seriously. But it will be clear that, espe-
ciallywhenwe consider the external drive that things have improved. The table doesn’tmentionEthernet
speed but because the 4 now has real support for it (instead of sharing the usb bus) we get close to 1 GB/s
there.

The real performance test is of course processing a TEX document and what better to test than the TEX
book. The processing time in seconds, after initial caching of files and fonts is:

model 1 2 3 4
TEXbook 13.649 7.023 4.553 1.694
context --make 19.949 11.796 6.034
context --make TL 89.454 46.578 29.256 14.146

The test of making the ConTEXt format using LuaTEX gives an indication of how well the io performs:
it loads the file database, some 460 Lua modules and 355 TEX source files. On my laptop with Intel
i7-3840QMwith 16GBmemory and decent ssd it takes 3.5 seconds (and 1 second less for LuaMetaTEX be-
cause there we don’t compress the format file). Somehow a regular TEXLive installation performs much
worse than the one from the contextgarden.

We didn’t test real ConTEXt documents at themeeting but when I came home the Pi 4 was bound again to
the compile farm. Harald and Mojca had prepared the machine to boot from the internal micro ssd and
use the external disk for the rest. So, when we could compile LuaMetaTEX again, I made an arm installer
for lmtx, and after that could not resist doing a simple test. First of course came generating the format.
It took 6.3 seconds to make one, which is a bit more than Harald measured. I see a hiccup at the end so
I guess that it has to do with the (external) disk or maybe there is some throttling going on because the
machine sits on top of a (warm) server.

More interesting was testing a real document: the upcoming LuaMetaTEXmanual. It has 226 pages, uses
21 font files, processes 225 MetaPost graphics, and in order to get it LuaMetaTEX does more than 50% of
thework in Lua, including all font andbackend-related operations. Onmy laptop it needs 9.5 seconds and
on the Pi 4 it uses 33 seconds. Of course, if I take amoremodernmachine than this 8-year-oldworkhorse,
I probably need half the time, but still the performance of the Raspberry Pi 4 is quite impressive. It uses
hardly any energy and can probably compete rather well with a virtual machine on a heavily loaded ma-
chine. It means that whenwe ever have to upgrade the server, I can consider replacement by an Ethernet
switch, with power over Ethernet, connected to a bunch of small Raspberries, also because normally one
would connect to some shared storage medium.

Because I was curious how the dedicated small Fitlet that I use for controlling my lights and heating per-
forms I also processed the manual there. After making the format, which takes 6 seconds, processing
the manual took a little less than 30 seconds. In that respect it performs the same as a Raspberry Pi 4.
But, inside that small (way more expensive) computer is an dual core AMD A10 Micro-6700T APU (with
AMD Radeon R6 Graphics), running a recent 64-bit Ubuntu. It does some 2400 bogomips (compare that
to the values of the Pi). I was a bit surprised that it didn’t outperform the Raspberry because the (fast ssd)
disk is connected to themain board and it hasmorememory and horsepower. It might be that in the end
an arm processor is simply better suited for the kind of byte juggling that TEX does, where special cpu
features andmultiple cores don’t contributemuch. It definitely demonstrates that we cannot neglect this
platform.

Modern Type 3 fonts 8

3 Modern Type 3 fonts

Support for Type3 fonts has been onmy agenda for a couple of years now. Here I will take a look at them
from theperspective of LuaMetaTEX.2The reason is that theymight beuseful for embedding (for instance)
runtime graphics (such as symbols) in an efficient way. In TEX systems Type3 fonts are normally used for
bitmap fonts, the pk output that comes viaMETAFONT. Where for instance Type1 fonts are defined using
a set of font specific rendering operators, a Type3 font can contain arbitrary code, in pdf files these are
pdf (graphic and text) operators.

Aprogram like LuaTEXsupports embedding of several font formats natively. A quick summary of relevant
formats is the following:3

• Type1: these are outline fonts usingcffdescriptions, a compact format for storing outlines. Normally
up to 256 characters are accessible but a font can have many more (as Latin Modern and TEX Gyre
demonstrate).

• OpenType: these also use the cff format. As with Type1 the outlines are mostly cubic Bezier curves.
Because there is noboundingboxdata stored in the format the enginehas topseudo-render the glyphs
to get that information. Whenembedding a subset thebackendcodehas toflatten the subroutine calls,
which is another reason the cff blob has to be disassembled.

• TrueType: these use the ttf format which uses quadratic B-splines. The font can have a separate
kerning table and stores information about the bounding box (which is then used by TEX to get the
right heights and depths of glyphs). Of course those details never make it into the pdf file as such.

• Type3: as mentioned this format is (traditionally) used to store bitmap fonts but as we will see it can
domore. It is actually the easiest format to deal with.

InLuaTEXany font canbea “wide” font, therefore inConTEXt aType1 font is not treateddifferently thanan
OpenType font. The LuaTEX backend can even disguise a Type1 font as an OpenType font. In the end, as
not thatmuch information endsup in thepdf file, thedifferences arenot that large for thefirst three types.
The content of a Type3 font is less predictable but even then it can have for instance a ToUnicode vector
so it has no real disadvantages in, say, accessibility. In ConTEXt lmtx, which uses LuaMetaTEXwithout any
backend, all is dealt with in Lua: loading, tweaking, applying and embedding.

The difference between OpenType and TrueType is mostly in the kind of curves and specific data ta-
bles. Both formats are nowadays covered by the OpenType specification. If you Google for the differ-
ence between these formats you can easily end up with rather bad (or even nonsense) descriptions.
The best references are https://en.wikipedia.org/wiki/Bézier_curve and the ever-improving
https://docs.microsoft.com/en-us/typographywebsite.

Support for so-called variable fonts ismostly demanding of the front-end because in the backend it is just
an instance of an OpenType or TrueType font being embedded. In this case the instance is generated by
the ConTEXt font machinery which interprets the cff and ttf binary formats in doing so. This feature is
not widely used but has been present from the moment these fonts showed up.

Type3 fonts don’t have a particularly good reputation, which is mainly due to the fact that viewers pay
less attention in displaying them, at least that was the case in the past. If they describe outlines, then

2 This chapter appeared in TugBoat 40:3. Thanks to Karl Berry for corrections.
3 Technically one can embed anything in the pdf file.

9 Modern Type 3 fonts

all is okay, apart from the fact that there is no anti-aliasing or hinting but on modern computers that is
hardly an issue. For bitmaps the quality depends on the resolution and traditionally TEX bitmap fonts are
generated for a specific device, but if you use a decent resolution (say 1200 dpi) then all should be okay.
Themain drawback is that viewers will render such a font and cache the (then available) bitmapwhich in
some cases can have a speed penalty.

Using Type3 fonts in a pdf backend is not something new. Already in the pdfTEX erawewere playingwith
so-called pdf glyph containers. In practice that worked okay but not so much for MetaPost output from
METAFONT fonts. As a side note: it might actually work better now that in MetaFun we have some exten-
sions for rendering the kind of paths used in fonts. But glyph containers were dropped long ago already
and Type3 was limited to traditional TEX bitmap inclusion. However, in LuaMetaTEX it is easier to mess
aroundwith fonts becauseweno longerneed toworry about side effects of patching font related inclusion
(embedding) for other macro packages. All is now under Lua control: there is no backend included and
therefore no awareness of something built-in as Type3.

So, as aprelude to the2019ConTEXtmeeting, I pickedup this threadand turned someearlier experiments
into production code. Originally I meant to provide support for MetaPost graphics but that is still locked
in experiments. I do have an idea for its interface, now that we have more control over user interfaces in
MetaFun.

In addition to ‘just graphics’ there is another candidate for Type3 fonts — extensions to OpenType fonts:

1. Color fonts where stacked glyphs are used (a nice method).
2. Fonts where svg images are used.
3. Fonts that come with bitmap representations in png format.

It will be no surprise that we’re talking of emoji fonts here although the second category is now also used
for regular text fonts. When these fonts showed up support for themwas not that hard to implement and
(as often) we could make TEX be among the first to support them in print (often such fonts are meant for
the web).

For category one, the stacked shapes, the approach was to define a virtual font where glyphs are flushed
while backtracking over thewidth in order to get the overlay. Of course color directives have to be injected
too. Thewhole lot iswrapped ina container that tells apdfhandlerwhat character actually is represented.
Due to the way virtual fonts work, every reference to a character results in the same sequence of glyph
references, (negative) kern operations and color directives plus the wrapper in the page stream. This is
not really an issue for emoji because these are seldom used and even then in small quantities. But it can
explode a pdf page stream for a color text font. All happens at runtime and because we use virtual fonts,
the commands are assembled beforehand for each glyph.

For the second category, svg images, we used a different approach. Each symbol was converted to pdf
using Inkscape and cached for later use. Instead of injecting a glyph reference, a reference to a so-called
XForm is injected, again with a wrapper to indicate what character we deal with. Here the overhead is not
that large but still present as we need the so-called ‘actual text’ wrapper.

The third category is done in a similar way but this time we use GraphicsMagick to convert the images
beforehand. The drawbacks are the same.

In ConTEXt lmtx a different approach is followed. The pdf stream that stacks the glyphs of category one
makes a perfect stream for a Type3 character. Apart from some juggling to relate a Type3 font to an
OpenType font, the page stream just contains references to glyphs (with the proper related Unicode slot).
The overhead is minimal.

Modern Type 3 fonts 10

For the second category ConTEXt lmtx uses its built-in svg converter. The xml code of the shape is con-
verted to (surprise): MetaPost. We could go directly to pdf but the MetaPost route is cheap and we can
then get support for color spaces, transformations, efficient paths and high quality all for free. It also
opens up the possibility for future manipulations. The Type3 font eventually has a sequence of drawing
operations, mixed with transformations and color switches, but only once. Most of the embedded code is
shared with the other categories (a plug-in model is used).

The third category follows a similar route but this time we use the built-in png inclusion code. Just like
the other categories, the page stream only contains references to glyphs.

It was interesting to find that most of the time related to the inclusion went into figuring out why viewers
don’t like these fonts. For instance, inAcrobat there needs to be a glyph at index zero and all viewers seem
to be able to handle at most 255 additional characters in a font. But once that, and a fewmore tricks, had
become clear, it worked out quite well. It also helps to set the font bounding box to all zero values so
that no rendering optimizations kick in. Also, some dimensions can are best used consistently. With svg
there were some issues with reference points and bounding boxes but these could be dealt with. A later
implementation followed a slightly different route anyway.

The implementation is reasonably efficient because most work is delayed till a glyph (shape) is actually
injected (and most shapes in these fonts aren’t used at all). The viewers that I have installed, Acrobat
Reader, Acrobat X, and the mupdf-based Sumatrapdf viewer can all handle the current implementation.

An example of a category one font is Microsoft’s seguiemj. I have no clue about the result in the future
because some of these emoji fonts change every now and then, depending also on social developments.
This is a category one font which not only has emoji symbols but also normal glyphs:

\definefontfeature[colored][default][colr=yes]
\definefont[TestA][file:seguiemj.ttf*colored]
\definesymbol[bug1][\getglyphdirect{file:seguiemj.ttf*colored} {\char"1F41C}]
\definesymbol[bug2][\getglyphdirect{file:seguiemj.ttf*colored} {\char"1F41B}]

The example below demonstrates this by showing the graphic glyph surrounded by the x from the emoji
font, and from a regular text font.

{\TestA x\char"1F41C x\char"1F41B x}%
\quad
{x\symbol[bug1]x\symbol[bug2]x}%
\quad
{\showglyphs x\symbol[bug1]x\symbol[bug2]x}%

x🐜x🐛x x🐜x🐛x x🐜x🐛x
In thismix we don’t use a Type3 font for the characters that don’t need stacked (colorful) glyphs, which is
more efficient. So the x characters are references to a regular (embedded) OpenType font.

The next example comes from a manual and demonstrates that we can (still) manipulate colors as we
wish.

\definecolor[emoji-red] [r=.4]
\definecolor[emoji-blue] [b=.4]
\definecolor[emoji-green] [g=.4]

11 Modern Type 3 fonts

\definecolor[emoji-yellow][r=.4,g=.5]
\definecolor[emoji-gray] [s=1,t=.5,a=1]

\definefontcolorpalette
[emoji-red]
[emoji-red,emoji-gray]

\definefontcolorpalette
[emoji-green]
[emoji-green,emoji-gray]

\definefontcolorpalette
[emoji-blue]
[emoji-blue,emoji-gray]

\definefontcolorpalette
[emoji-yellow]
[emoji-yellow,emoji-gray]

\definefontfeature[seguiemj-r][default][ccmp=yes,dist=yes,colr=emoji-red]
\definefontfeature[seguiemj-g][default][ccmp=yes,dist=yes,colr=emoji-green]
\definefontfeature[seguiemj-b][default][ccmp=yes,dist=yes,colr=emoji-blue]
\definefontfeature[seguiemj-y][default][ccmp=yes,dist=yes,colr=emoji-yellow]

\definefont[MyColoredEmojiR][seguiemj*seguiemj-r]
\definefont[MyColoredEmojiG][seguiemj*seguiemj-g]
\definefont[MyColoredEmojiB][seguiemj*seguiemj-b]
\definefont[MyColoredEmojiY][seguiemj*seguiemj-y]

👨👩👨👩👨👩👨👩

Let’s look inmore detail at the woman emoji. On the left we see the default colors, and on the right we see
our own:

👩👩

Themulti-color variant in ConTEXt MkIV ends up as follows in the page stream:

/Span << /ActualText <feffD83DDC69> >> BDC
q
0.000 g
BT
/F8 11.955168 Tf
1 0 0 1 0 2.51596 Tm [<045B>]TJ
0.557 0.337 0.180 rg
1 0 0 1 0 2.51596 Tm [<045C>]TJ

Modern Type 3 fonts 12

1.000 0.784 0.239 rg
1 0 0 1 0 2.51596 Tm [<045D>]TJ
0.000 g
1 0 0 1 0 2.51596 Tm [<045E>]TJ
0.969 0.537 0.290 rg
1 0 0 1 0 2.51596 Tm [<045F>]TJ
0.941 0.227 0.090 rg
1 0 0 1 0 2.51596 Tm [<0460>]TJ
ET
Q
EMC

and the reddish one becomes:

/Span << /ActualText <feffD83DDC69> >> BDC
q
0.400 0 0 rg 0.400 0 0 RG
BT
/F8 11.955168 Tf
1 0 0 1 0 2.51596 Tm [<045B>]TJ
1 g 1 G /Tr1 gs
1 0 0 1 0 2.51596 Tm [<045C>1373<045D>1373<045E>1373<045F>1373<0460>]TJ
ET
Q
EMC

Each time this shape is typeset these sequences are injected. In ConTEXt lmtx we get this in the page
stream:

BT
/F2 11.955168 Tf
1 0 0 1 0 2.515956 Tm [<C8>] TJ
ET

This time the composed shape ends up in the Type3 character procedure. In the colorful case (reformat-
ted because it actually is a one-liner):

2812 0 d0
0.000 g BT /V8 1 Tf [<045B>] TJ ET
0.557 0.337 0.180 rg BT /V8 1 Tf [<045C>] TJ ET
1.000 0.784 0.239 rg BT /V8 1 Tf [<045D>] TJ ET
0.000 g BT /V8 1 Tf [<045E>] TJ ET
0.969 0.537 0.290 rg BT /V8 1 Tf [<045F>] TJ ET
0.941 0.227 0.090 rg BT /V8 1 Tf [<0460>] TJ ET

and in the reddish case (where we have a gray transparent color):

2812 0 d0
0.400 0 0 rg 0.400 0 0 RG
BT /V8 1 Tf [<045B>] TJ ET
1 g 1 G /Tr1 gs
BT /V8 1 Tf [<045C>] TJ ET

13 Modern Type 3 fonts

BT /V8 1 Tf [<045D>] TJ ET
BT /V8 1 Tf [<045E>] TJ ET
BT /V8 1 Tf [<045F>] TJ ET
BT /V8 1 Tf [<0460>] TJ ET

but this time we only get these verbose compositions once in the pdf file. We could optimize the last
variantbyasequenceof indicesandnegativekernsbut it hardlypaysoff. There isnoneed forActualText
here because we have an entry in the ToUnicode vector:

<C8> <D83DDC69>

To be clear, the /V8 is a sort of local reference to a font which can have an /F8 counterpart elsewhere.
These Type3 fonts have their own resource references and I found it more clear to use a different prefix
in that case. If we only use a few characters of this kind, of course the overhead of extra fonts has a penalty
but as soon we refer to more characters we gain a lot.

When we have svg fonts, the gain is a bit less. The pdf resulting from the MetaPost run can of course be
large but they are included only once. In MkIV these would be (shared) so-called XForms. In the page
streamwe then see a simple reference to such an XForm but again wrapped into an ActualText. In lmtx
we get just a reference to a Type3 character plus of course an extra font.

The emojionecolor-svginot font is somewhat problematic (although maybe in the meantime it has
become obsolete). As usual with new functionality, specifications are not always available or complete
(especially when they are application specs turned into standards). This is also true with for instance
svg fonts. The current documentation on the Microsoft website is reasonable and explains how to deal
with the viewport but when I first implemented support for svg it was more trial and error. The original
implementation in ConTEXt used Inkscape to generate pdf files with a tight bounding box and mix that
with information from the font (in MkIV and the generic loader we still use this method). This results
in a reasonable placement for emoji (that often sit on top of the baseline) but not for characters. More
accurate treatment, using the origin and bounding box, fail for graphics with bad viewports and strange
transform attributes. Now one can of course argue that I read the specs wrong, but inconsistencies are
hard to deal with. Even worse is that successive versions of a font can demand different hacks. (I would
not be surprised if some programs have built-in heuristics for some fonts that apply fixes.) Here is an
example:

<svg transform="translate(0 -1788) scale(2.048)" viewBox="0 0 64 64" ...>
<path d="... all within the viewBox ..." ... />

</svg>

It is no problem to scale up the image to normal dimensions, often 1000, or 2048 but I’ve also seen 512.
The 2.048 suggests a 2048 unit approach, as does the 1788 shift. Now, we could scale up all dimensions
by 1000/64 and thenmultiply by 2.048 and eventually shift over 1788, butwhy not scale the 1788 by 2.048
or scale 64 by 2.048? Even if we can read the standard to suit this specification it’s just a bit toomessy for
my taste. In fact I tried all reasonable combinations and didn’t (yet) get the right result. In that case it’s
easier to just discard the font. If a user complains that it (kind of) worked in the past, a counter-argument
can be that other (more recent) fonts don’t work otherwise. In the end we ended up with an option: when
the svg feature value is fixdepth the vertical position will be fixed.

\definefontfeature[whatever][default][color=yes,svg=fixdepth]
\definefont[TestB][file:emojionecolor-svginot.ttf*whatever]

x🐜🐛x

Modern Type 3 fonts 14

The newer emojionecolor font doesn’t need this because it has a viewBox of 0 54.4 64 64which fixes
the baseline.

\definefontfeature[whatever][default][color=yes,svg=yes]
\definefont[TestB][file:emojionecolor.otf*whatever]

x🐜🐛x
Another example of a pitfall is running into category one glyphs made from several pieces that all have
the same color. If that color is black, one starts to wonder what is wrong. In the end the ConTEXt code
was doing the right thing after all, and I would not be surprised if that glyph gets colors in an update
of the font. For that reason it makes no sense to include them as examples here. After all, we can hardly
complain about free fonts (and I’m also guilty of imposing bugs on users). By theway, for the font referred
to here (twemojimozilla), another pitfall was that all shapes inmy copy had a zero bounding box which
means that although a width is specified, rendering in documents can give weird side effects. This can
be corrected by the dimensions feature that forces the ascender and descender values to be used.

\definefontfeature[colored:x][default][colr=yes]
\definefontfeature[colored:y][default][colr=yes,dimensions={1,max,max}]
\definefont[TestC][file:twemojimozilla.ttf*colored:x]
\definefont[TestD][file:twemojimozilla.ttf*colored:y]

🐜 🐜 🐜 🐜

An example of a png-enhanced font is the applecoloremoji font. The bitmaps are relatively large for
the quality they provide and some look like scans.

\definefontfeature[sbix][default][sbix=yes]
\definefont[TestE][file:applecoloremoji.ttc*sbix at 10bp]

#⏳⏲
Asmentioned above, there are fonts that color characters other than emoji. We give two examples (some-
times fonts are mentioned on the ConTEXt mailing list).

\definefontfeature
[whatever]
[default,color:svg]
[script=latn,
language=dflt]

\definefont[TestF][file:Abelone-FREE.otf*whatever @ 13bp]
\definefont[TestG][file:Gilbert-ColorBoldPreview5*whatever @ 13bp]
\definefont[TestH][file:ColorTube-Regular*whatever @ 13bp]

Of course one can wonder about the readability of these fonts and unless one used random colors (which
bloats the file immensely) it might become boring, but typically such fonts are only meant for special

15 Modern Type 3 fonts

purposes.

Coming back to the use of typefaces in electronic publish-

ing: many of the new typographers receive their knowledge

and information about the rules of typography from books,

from computer magazines or the instruction manuals which

they get with the purchase of a PC or software. There is not

so much basic instruction, as of now, as there was in the old

days, showing the differences between good and bad typo-

graphic design. Many people are just fascinated by their PC's

tricks, and think that a widely--praised program, called up

on the screen, will make everything automatic from now on.

Theprevious font is the largest and as a consequence also puts some strain on the viewer, especiallywhen
zooming in. But, because viewers cache Type3 shapes it’s a one-time penalty.

Coming back to the use of typefaces in electronic publishing: many of the new typographers

receive their knowledge and information about the rules of typography from books, from computer

magazines or the instruction manuals which they get with the purchase of a PC or software. There

is not so much basic instruction, as of now, as there was in the old days, showing the differences

between good and bad typographic design. Many people are just fascinated by their PC’s tricks,

and think that a widely--praised program, called up on the screen, will make everything automatic

from now on.

This font is rather lightweight. Contrary to what one might expect, there is no transparency used (but of
course we do support that when needed).

Coming back to the use of typefaces in elec

tronic publishing many of the new typogra

phers receive their knowledge and information

about the rules of typography from books from

computer magazines or the instruction manuals

which they get with the purchase of a PC or

software. There is not so much basic instruc

tion as of now as there was in the old days

showing the differences between good and bad

typographic design. Many people are just fas

cinated by their PCs tricks and think that a

widelypraised program called up on the screen

will make everything automatic from now on.

Modern Type 3 fonts 16

This third example is again rather lightweight. Such fonts normally have a rather limited repertoire al-
though there are some accented characters included. But they are not really meant for novels anyway. If
you look closely you will also notice that some characters are missing and kerning is suboptimal.

I considered testing somemore fonts but when trying to download some interesting looking ones I got a
popup asking me for my email address in order to subscribe me to something: a definite no-go.

I alreadymentioned thatwehave a built-in converter that goes fromsvg toMetaPost. Although this article
deals with fonts, the following code demonstrates that we can also access such graphics inMetaFun itself.
The nice thing is that because we get pictures, they can bemanipulated.

\startMPcode{doublefun}
picture p ; p := lmt_svg [filename = "mozilla-svg-001.svg"] ;
numeric w ; w := bbwidth(p) ;
draw p ;
draw p xscaled -1 shifted (2.5*w,0);
draw p rotatedaround(center p,45) shifted (3.0*w,0) ;
draw image (

for i within p : if filled i :
draw pathpart i withcolor green ;

fi endfor ;
) shifted (4.5*w,0);
draw image (

for i within p : if filled i :
fill pathpart i withcolor red withtransparency (1,.25) ;

fi endfor ;
) shifted (6*w,0);

\stopMPcode

This graphic is a copy from a glyph from an emoji font, so we have plenty of such images to play with. The
above manipulations result in:

Now that we’re working with MetaPost wemay as well see if we can also load a specific glyph, and indeed
this is possible.

\startMPcode{doublefun}
picture lb, rb ;
lb := lmt_svg [fontname = "Gilbert-ColorBoldPreview5", unicode = 123] ;
rb := lmt_svg [fontname = "Gilbert-ColorBoldPreview5", unicode = 125] ;
numeric dx ; dx := 1.25 * bbwidth(lb) ;
draw lb ;
draw rb shifted (dx,0) ;
pickup pencircle scaled 2mm ;
for i within lb :

draw lmt_arrow [
path = pathpart i,

17 Modern Type 3 fonts

pen = "auto",
alternative = "curved",
penscale = 8

]
shifted (3dx,0)
withcolor "darkblue"
withtransparency (1,.5)

;
endfor ;
for i within rb :

draw lmt_arrow [
path = pathpart i,
pen = "auto",
alternative = "curved",
penscale = 8

]
shifted (4dx,0)
withcolor "darkred"
withtransparency (1,.5)

;
endfor ;

\stopMPcode

Here we first load two character shapes from a font. The Unicode slots (which here are the same as the
ascii slots) might look familiar: they indicate the curly brace characters. We get two pictures and use the
within loop to run over the pathswithin these shapes. Each shape ismade from three curves. As a bonus
a fewmore characters are shown.

It is not hard to imagine that a collection of such graphics could bemade into a font (at runtime). One only
needs to find the motivation. Of course one can always use a font editor (or Inkscape) and tweak there,
which probablymakesmore sense, but sometimes a bit of MetaPost hackery is a nice distraction. Editing
the svg code directly is not that much fun. The overall structure often doesn’t look that bad (apart from
often rather redundant grouping):

<svg xmlns="http://www.w3.org/2000/svg">
<path fill="#d87512" d="..."/>
<g fill="#bc600d">

<path d="..."/>
</g>
<g fill="#d87512">

<path d="..."/>
<path d="..."/>

</g>
<g fill="#bc600d">

Modern Type 3 fonts 18

<path d="..."/>
</g>
...

</svg>

In addition to paths there can be line, circle and similar elements but often fonts just use the path
element. This element has a d attribute that holds a sequence of one character commands that each can
be followed by numbers. Here are the start characters of four such attributes:

M11.585 43.742s.387 1.248.104 3.05c0 0 2.045-.466 1.898-2.27 ...
M53.33 39.37c0-4.484-35.622-4.484-35.622 0 0 10.16.05 ...
M42.645 56.04c1.688 2.02 9.275.043 10.504-2.28 5.01-9.482-.006 ...
M54.2 41.496s-.336 4.246-4.657 9.573c0 0 4.38-1.7 5.808-4.3 ...

Indeed, numbers can be pasted together, also with the operators, which doesn’t help with see-
ing at a glance what happens. Probably the best reference can be found at https://devel-
oper.mozilla.org/en-US/docs/Web/SVGwhere it is explained that a path can have move, line, curve,
arc and other operators, as well use absolute and relative coordinates. How that works is for another
article.

Howwould the TEXworld look like today if DonKnuth hadmadeMETAFONT support colors? Of course one
can argue that it is a bitmap font generator, but in our caseusinghigh resolutionbitmapsmight evenwork
out better. In the example above thefirst text fragment uses a font that is very inefficient: it overlaysmany
circles indifferent colorswith slight displacements. Here abitmap fontwouldnot only give similar effects
but probably also bemore efficient in terms of storage as well as rendering. TheMetaPost successor does
support color andwithmplib in LuaTEXwe cankeepupquitewell . . . as hopefully has beendemonstrated
here.

19 Modern Type 3 fonts

ThreeSix, Don Knuths first colorfont? 20

4 ThreeSix, Don Knuths first colorfont?

In the process of reaching completion and perfection Don Knuth occasionally posts links to upcoming
parts of the TAOCP series on hisweb pages. Now, I admit thatmuch isway beyondmebut I do understand
(and like) thegraphics and Iknow thatDonusesMetaPost. Thenext example code is just aproof of concept
butmight eventuallybecomeadecentmodule (withhelpers) formaking (runtime) fonts. After all, weneed
to adapt to current developments and TEXies always are willing to adapt and experiment. This chapter
was written at the same time as the previous one on Type3 fonts so youmight want to read that first.

The font explored here is FONT36, used in “A potpourri of puzzles” and flagged as “a special font designed
fordissectionpuzzles” (in fascicle 9b forVolume4). Playingwith andvisualizing formeoftenworksbetter
than formulas, which then distracts me from the original purpose, but let’s have a closer look anyway.

1234567890

ABCDEFGHIJKLM

NOPQRSTUVWXYZ

The fonthasafixedmaximumheight of 8quantities. There isnodepth in thecharacters. Somecharacters
are wider. In this example we use a tight bounding box. In ConTEXt speak this font is just a regular font
but with a special feature enabled.

\definefontfeature
[fontthreesix]
[default]
[metapost=fontthreesix]

\definefont[DEKFontA][Serif*fontthreesix]

After this the \DEKFontA command will set this font as current font. The definition mentions Serif as
font name. In ConTEXt this name will resolve in the currently defined Serif, so when your document uses
LatinModern that will be the one. The fontthreesixwillmake this instance use that feature set, and the
feature definition has the defaults as parent (so we get kerning, ligatures, etc.) but as extra feature also
metapost. This means that the new glyphs that are about to be defined will actually be injected in the
Serif! We will replace characters in that instance. So, the following:

This font is used in \quotation {The Art Of Computer Programming} by
Don Knuth, not in volume~1, 2 or~3, but in number~4!

comes out as:

This font is used in “TheArt Of Computer Programming” by Don Knuth, not in volume 1, 2 or 3,
but in number 4!

But that doesn’t look too good, so we will tweak the font a bit:

21 ThreeSix, Don Knuths first colorfont?

\definefontfeature
[fontthreesix-color]
[default]
[metapost={category=fontthreesix,spread=.1}]

\definefont[DEKFontD][Serif*fontthreesix]

The spread (multiplied by the font unit, which is 12 basepoints here) will add a bit more spacing around
the blob:

This font is used in “TheArtOfComputerProgramming” byDonKnuth, not in volume1,2 or3,
but in number4!

Now, keep in mind that we’re talking of a real font here. You can cut and paste these characters. It’s just
the default uppercase Latin alphabet plus digits.

Before we go and look at some of the code needed to render this, a fewmore examples will be given.

1234567890

ABCDEFGHIJKLM

NOPQRSTUVWXYZ

In the above example we not only use color, but also a different shape and random colors (that is: random
per TEX job). The feature definition for this is:

\definefontfeature
[fontthreesix-color]
[default]
[metapost={%
category=fontthreesix,shape=diamond,%
color=random,pen=fancy,spread=.1%

}]

Possible shapes are circle, diamond and square and instead of a random color one can give a known
color name. Using transparency makes no sense in this font.

A nice usage for this font are initials:

\setupinitial[font=Serif*fontthreesix-initial sa 5]
{\DEKFontB \placeinitial \input zapf\par}

The initial feature is defined as:

\definefontfeature
[fontthreesix-initial]
[metapost={category=fontthreesix,color=random,shape=circle}]

We use this in quoting Hermann Zapf, one that for sure is very applicable in a case like this:

ThreeSix, Don Knuths first colorfont? 22

C

oming back to the use of typefaces in electronic publishing: many of the new typographers receive
their knowledge and information about the rules of typography from books, from computer mag-
azines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC’s tricks,
and think that a widely--praised program, called up on the screen, will make everything automatic
from now on.

Some combinations of sub-features are shown in figure 4.1. We blow up the diamond with fancy pen
example in figure 4.2. Alas, the TEX logo doesn’t look that good in such a font. Using it for acronyms is not
a good idea anyway, but maybe you can figure out figure 4.3.

DEKDEKDEK

shape=circle shape=square shape=diamond

DEKDEKDEK

shape=circle,pen=fancy shape=square,pen=fancy shape=diamond,pen=fancy

DEKDEKDEK

shape=circle,random=yes shape=square,random=yes shape=diamond,random=yes

Figure 4.1

T

E

X

Figure 4.2

You can quit reading now or expose yourself to how this is coded. We use a combination of Lua andMeta-
Post, but different solutions are possible. The shapes are entered (or course) with zeros and ones.

\startluacode
local font36 = {

["0"] = "00111100 01111110 11000011 11000011 11000011 ...",

23 ThreeSix, Don Knuths first colorfont?

TAOCP

Figure 4.3

["1"] = "00011100 11111100 11101100 00001100 00001100 ...",
.....
["D"] = "11111100 11100010 01100011 01100011 01100011 ...",
["E"] = "1111111 1110001 0110101 0111100 0110100 0110001 ...",
.....
["K"] = "11101110 11100100 01101000 01110000 01111000 ...",
.....

}
\stopluacode

We also use Lua to register this font. The actual code looks slightly different because it uses some helpers
from the ConTEXt Lua libraries. We remap the bits pattern onto MetaPost macro calls.

\startluacode
local replace = {

["0"] = "N;",
["1"] = "Y;",
[" "] = "L;",

}

function MP.registerthreesix(name)
fonts.dropins.registerglyphs {

name = name,
units = 12,
usecolor = true,

}
for u, v in table.sortedhash(font36) do

local ny = 8
local nx = (#v - ny + 1) // ny
local height = ny * 1.1 - 0.1
local width = nx * 1.1 - 0.1
local code = string.gsub(v,".",replace)
fonts.dropins.registerglyph {

category = name,
unicode = utf.byte(u),
width = width,
height = height,
code = string.format("ThreeSix(%s);",code),

}
end

end

MP.registerthreesix("fontthreesix")

ThreeSix, Don Knuths first colorfont? 24

\stopluacode

So, after this the font fontthreesix is known to the system but we still need to provide MetaPost code to
generate it. The glyphs themselves are now just sequences of N, Y and Lwith some wrapper code around
it. The definitions are put in the MP namespace simply because a first version initialized inMetaPost, and
there could create variants, but in the end I settled on the parameter interface at the TEX end.

The next definition looks a bit complex but normally such a macro is stepwise constructed. Notice how
we can query the sub features. In order to make that possible the regular MetaFun parameter handling
code is used. We just push the sub-features into to mpsfont namespace.

\startMPcalculation{simplefun}

def InitializeThreeSix =
save Y, N, L, S ; save dx, dy, nx, ny ; save currentpen ;
save shape, fillcolor, mypen, random, spread, hoffset ;
string shape, fillcolor, mypen ; boolean random ;
pen currentpen ;
dx := 11/10 ;
dy := - 11/10 ;
nx := - dx ;
ny := 0 ;
shape := getparameterdefault "mpsfont" "shape" "circle" ;
random := hasoption "mpsfont" "random" "true" ;
fillcolor := getparameterdefault "mpsfont" "color" "" ;
mypen := getparameterdefault "mpsfont" "pen" "" ;
spread := getparameterdefault "mpsfont" "spread" 0 ;
hoffset := 12 * spread / 2 ;
currentpen := pencircle

if mypen = "fancy" :
xscaled 1/20 yscaled 2/20 rotated 45

else :
scaled 1/20

fi ;
if shape == "square" :

def S =
unitsquare if random : randomized 1/10 fi
shifted (nx,ny)

enddef ;
elseif shape = "diamond" :

def S =
unitdiamond if random : randomized 1/10 fi
shifted (nx,ny)

enddef ;
else :

def S =
unitcircle if random : randomizedcontrols 1/20 fi
shifted (nx,ny)

enddef ;
fi ;
def N =

25 ThreeSix, Don Knuths first colorfont?

nx := nx + dx ;
draw S ;

enddef ;
if fillcolor = "random" :

def Y =
nx := nx + dx ;
fillup S withcolor white randomized (2/3,2/3,2/3) ;

enddef ;
elseif fillcolor = "" :

def Y =
nx := nx + dx ;
fillup S ;

enddef ;
else :

def Y =
nx := nx + dx ;
fillup S withcolor fillcolor ;

enddef ;
fi ;
def L =

nx := - dx ;
ny := ny + dy ;

enddef ;
enddef ;

vardef ThreeSix (text code) =
InitializeThreeSix ; % todo: once per instance run
draw image (code) shifted (hoffset,-ny) ;

enddef ;

\stopMPcalculation

This code is not that efficient in the sense that there’s quite someMetaPost-Lua-MetaPost traffic going on,
for instance each parameter check involves this, but in practice performance is quite okay, certainly for
such a small font. There will be an initializer option some day soon. The simplefun is a reference to an
mplib instance that does load MetaFun but only the modules that make no sense for this kind of usage.
It also enforces double mode. The calculations wrapper just executes the code and does not place some
(otherwise empty) graphic.

Those who have seen (and/or read) “Concrete Mathematics” will have noticed the use of inline images,
like dice. Dice are also used in “pre-fascicle 5a” (I need a few more lives to grasp that, so I stick to the
images for now!). So, to compensate the somewhat complex code above, I will show how to accomplish
that. This time we do all in MetaPost:

This is not that hard to follow. We define some shapes first. These could have been assigned to the code
parameter directly but this is nicer. Next we register the font itself and after that we set glyphs. We also
set the official Unicode slots. So, copying a dice can either result in a digit or in a Unicode slot for a dice.
In the example below we switch to a color which demonstrates that our dice can be colored at the TEX
end. It’s either that or coloring at the MetaPost end as both demand a different kind of Type3 embedding
trickery.

ThreeSix, Don Knuths first colorfont? 26

Weactually predefine three features. The digits onewillmap regular digit in the input to dice. We accom-
plish that via a font feature:

\startluacode
fonts.handlers.otf.addfeature("dice:digits", {

type = "substitution",
order = { "dice:digits" },
nocheck = true,
data = {

[0x30] = "invaliddice",
[0x31] = 0x2680,
[0x32] = 0x2681,
[0x33] = 0x2682,
[0x34] = 0x2683,
[0x35] = 0x2684,
[0x36] = 0x2685,
[0x37] = "invaliddice",
[0x38] = "invaliddice",
[0x39] = "invaliddice",

},
})
\stopluacode

This kind of trickery is part of the fontmachinery used in ConTEXt and permits runtime adaption of fonts,
so we just use the same mechanism. The nocheck is needed to avoid this feature not kicking in due to
lack of (at the time of checking) yet undefined dice.

\definefontfeature
[dice:normal]
[default]
[metapost={category=dice}]

\definefontfeature
[dice:reverse]
[default]
[metapost={category=dice,option=reverse}]

\definefontfeature
[dice:digits]
[dice:digits=yes]

\definefont[DiceN] [Serif*dice:normal]
\definefont[DiceD] [Serif*dice:normal,dice:digits]
\definefont[DiceR] [Serif*dice:reverse,dice:digits]

{\DiceD Does 1 it 4 work? And {\darkgreen 3} too?} {\DiceR And how about
{\darkred 3} then? But 8 should sort of fail!}

Does ⚀ it ⚃work? And ⚂ too? And how about ⚂ then? But � should sort of fail!

The six digits and Unicode characters come out the same:

\red \DiceD \dostepwiserecurse {`1} {`6}{1}{\char#1\quad}%

27 ThreeSix, Don Knuths first colorfont?

\blue \DiceN \dostepwiserecurse{"2680}{"2685}{1}{\char#1\quad}%

⚀ ⚁ ⚂ ⚃ ⚄ ⚅ ⚀ ⚁ ⚂ ⚃ ⚄ ⚅

It is tempting to implement for instance 7 as two dice (a one to multi mapping in OpenType speak) but
then one has to decide what combination is taken. One can also implement ligatures so that for instance
12 results in two six dice. But I think that’s over the top and only showing TEX muscles. It is anyway not
that hard to do as we have an interface for that already.

Sowhynot do thedominos aswell? Because there are somanydominoswepredefine the shapes and then
register the lot in a loop. Wehavehorizontal andvertical variants. Being lazy I justmade twohelperswhile
one could have done but with some rotation and shifting of the horizontal one. The loop could be amacro
but we don’t save much code that way.

\startMPcalculation{simplefun}

picture Dominos[] ;

Dominos[0] := image() ;
Dominos[1] := image(draw(4,4);) ;
Dominos[2] := image(draw(2,6);draw(6,2););
Dominos[3] := image(draw(2,6);draw(4,4);draw(6,2););
Dominos[4] := image(draw(2,6);draw(6,6);draw(2,2);draw(6,2););
Dominos[5] := image(draw(2,6);draw(6,6);draw(4,4);draw(2,2);draw(6,2););
Dominos[6] := image(draw(2,6);draw(4,6);draw(6,6);draw(2,2);draw(4,2);draw(6,2););

lmt_registerglyphs [
name = "dominos",
units = 12,
width = 16,
height = 8,
depth = 0,
usecolor = true,

] ;

def DrawDominoH(expr a, b) =
draw image (

pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "color" "") = "black" :

fillup unitsquare xyscaled (16,8) ;
draw (8,.5) -- (8,7.5) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[a]

withpen currentpen
withcolor white ;

draw Dominos[b] shifted (8,0)
withpen currentpen
withcolor white ;

else :
draw unitsquare xyscaled (16,8) ;

ThreeSix, Don Knuths first colorfont? 28

draw (8,0) -- (8,8) ;
pickup pencircle scaled 3/2 ;
draw Dominos[a]

withpen currentpen ;
draw Dominos[b] shifted (8,0)

withpen currentpen ;
fi ;

) ;
enddef ;

def DrawDominoV(expr a, b) = % is H rotated and shifted
draw image (

pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "color" "") = "black" :

fillup unitsquare xyscaled (8,16) ;
draw (.5,8) -- (7.5,8) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)

withpen currentpen
withcolor white ;

draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)
withpen currentpen
withcolor white ;

else :
draw unitsquare xyscaled (8,16) ;
draw (0,8) -- (8,8) ;
pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)

withpen currentpen ;
draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)

withpen currentpen ;
fi ;

) ;
enddef ;

begingroup
save unicode ; numeric unicode ; unicode := 127025 ; % 1F031

for i=0 upto 6 :
for j=0 upto 6 :

lmt_registerglyph [
category = "dominos",
unicode = unicode,
code = "DrawDominoH(" & decimal i & "," & decimal j & ");",
width = 16,
height = 8,

] ;
unicode := unicode + 1 ;

endfor ;
endfor ;

29 ThreeSix, Don Knuths first colorfont?

save unicode ; numeric unicode ; unicode := 127075 ;

for i=0 upto 6 :
for j=0 upto 6 :

lmt_registerglyph [
category = "dominos",
unicode = unicode,
code = "DrawDominoV(" & decimal i & "," & decimal j & ");",
width = 8,
height = 16,

] ;
unicode := unicode + 1 ;

endfor ;
endfor ;

endgroup ;

\stopMPcalculation

Again we predefine a couple of features:

\definefontfeature
[dominos:white]
[default]
[metapost={category=dominos}]

\definefontfeature
[dominos:black]
[default]
[metapost={category=dominos,color=black}]

\definefontfeature
[dominos:digits]
[dominos:digits=yes]

This last feature is yet to be defined. We could deal with the invalid dominos with some substitution
trickery but let’s keep it simple.

\startluacode
local ligatures = { }
local unicode = 127025

for i=0x30,0x36 do
for j=0x30,0x36 do

ligatures[unicode] = { i, j }
unicode = unicode + 1 ;

end
end

fonts.handlers.otf.addfeature("dominos:digits", {
type = "ligature",
order = { "dominos:digits" },

ThreeSix, Don Knuths first colorfont? 30

nocheck = true,
data = ligatures,

})
\stopluacode

That leaves showing an example. We define a few fonts and again we just extend the Serif:

\definefont[DominoW][Serif*dominos:white]
\definefont[DominoB][Serif*dominos:black]
\definefont[DominoD][Serif*dominos:white,dominos:digits]

The example is:

\DominoW
\char"1F043\quad \quad
\char"1F052\quad \quad
\char"1F038\quad \quad
\darkgreen\char"1F049\quad \char"1F07B\quad

\DominoB
\char"1F087\quad
\char"1F088\quad
\char"1F089\quad

\DominoD
\darkred 12\quad56\quad64

Watch the ligatures in action:

🁃 🀱 🁒 🀲 🀸 🀳 🁉 🁻 🂇 🂈 🂉 🀺 🁚 🁟

To what extent the usage of symbols like dice and dominos as characters in the mentioned book are re-
sponsible for them being in Unicode, I don’t know. Now with all these emoji showing up one can wonder
about graphics in such a standard anyway. But for sure, even after more than three decades, Don still
makes nice fonts.

A treasure of tiny graphics can be found in “pre-fascicle 5c” andmany are in color! In fact, it has dominos
too. It must have been a lot of fun writing this! I’m thinking of turning the pentominoes into a font where
a GPOS feature can deal with the inter-pentomino kerning (which mighty work out okay for example 36.
Thewindmill dominos alsomake a nice example for a font where ligatureswill boil down to the base form
and the (one or more) blades are laid over. It’s definitely an inspiring read.

31 ThreeSix, Don Knuths first colorfont?

Normalization 32

5 Normalization

What I describe here was long due. I delayed it because when enabled it had best also be used and I need
to (check and) adapt some code to it in order to profit from it. So, if used at all, it will take some time to
have an effect on the ConTEXt code base. But first some background information.

When TEX builds a paragraph it splits the current text stream (that makes up the paragraph) into lines
where each line becomes anhorizontal box. In LuaTEX, this process is split into distinctive steps, contrary
to regular TEX where the splitting is combined with hyphenation, ligature construction and font kerning.
But what all engines have in common is that after the decision ismade about what a line is, the result gets
packages into the horizontal box.

The decision making is influenced by quite some factors, like:

• The indentation of the first line, driven by the presence of a box of with a certain width and no height
and depth (its always there, also when the indentation is zero).

• Hanging indentation, which can happen at each corner of the paragraph, or alternatively a specific
parshape.

• Left and/or right margins, aka left skip and right skip. A right skip is always present, even when zero.
• The way the last line gets aligns, aka parfill skip.
• Directional changes that need to be carries over to the next line.
• Optional protrusion of characters to the left of right of the line, something that is sensitive for direc-

tional changes.
• Expansion of characters in order to get better inter-word spacing and/or to prevent lines being too

bad. There can be stretch as well as shrink but on a per line basis. Inter-character kerns can also get
that treatment.

• The penalties associated to hyphenation: the pre-last line, the last two lines, a list of penalties (𝜀-TEX),
specific penalties bound to hyphenation pints (LuaTEX).

• The wish to have more or less lines than optimal, aka looseness. I have to admit that I never use that
feature.

In traditional TEX it doesn’t really matter how the resulting boxes look like, as long as the following steps
can handle them, and those steps don’t look into those boxes. In fact, unless you unpack a box, only the
backenddealswith the content. But inLuaTEXwehave callbacks thathook into several stages and can look
into the constructed boxes. In LuaTEX these boxes also have embedded directional information (needed
by the backend) and (although that is seldom used) left or right boxedmaterial, a features inherited from
Aleph/Omega. And when messing around with the content of boxes one has to know what can be seen
there. In principle the code can be reorganized a it but adding additional functionality is not that triv-
ial because we want to stay close to the original implementation, even if it has been messed up a bit by
successive additions. Eventually I might give it a try to integrate all these features a bit better, but on the
other hand: it works.

In the next examples we show how the result of typesetting a paragraph looks like. We use the Sapolsky
quote from the distribution. The cyan glue nodes are the left and right skip nodes, and the gray one at
the end of the last line represents the parfill skip. The magenta ones at the edge are baseline skips. An
indentation is shown in gray too. As experiment we have four normalization levels but in the end only
the highest level makes sense, simply because normalization makes no sense unless one consistently
normalizes all. We just keep the granularity because it makes it possible to explain what gets done.

33 Normalization

normalization 0, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = 0pt
\hangafter = 0

LS:40.000 H__ AgricultureSP:2.121isSP:2.121aSP:2.121fairlySP:2.121recentSP:2.121humanSP:2.121invention,SP:2.160andSP:2.121inSP:2.121manySP:2.121waysSP:2.121itSP:2.121wasSP:2.121oneSP:2.121ofSP:2.121theRS:50.000L__BS:4.625

LS:40.000 greatSP:3.213stupidSP:3.213movesSP:3.213ofSP:3.213allSP:3.213time.SP:5.774Hunter-H__ gatherersSP:3.213haveSP:3.213thousandsSP:3.213ofSP:3.213wildSP:3.213sourcesSP:3.213ofRS:50.000L__BS:4.625

LS:40.000 foodSP:2.171toSP:2.171subsistSP:2.171on.SP:3.042AgricultureSP:2.171changedSP:2.171thatSP:2.171all,SP:2.201generatingSP:2.171anSP:2.171overwhelmingSP:2.171relianceRS:50.000L__BS:4.625

LS:40.000 onSP:3.159aSP:3.159fewSP:3.159dozenSP:3.159domesticatedSP:3.159foodSP:3.159sources,SP:3.369makingSP:3.159youSP:3.159extremelySP:3.159vulnerableSP:3.159toSP:3.159theRS:50.000L__BS:4.625

LS:40.000 nextSP:3.231famine,SP:3.459theSP:3.231nextSP:3.231locustSP:3.231infestation,SP:3.459theSP:3.231nextSP:3.231potatoSP:3.231blight.SP:5.829AgricultureSP:3.231allowedRS:50.000L__BS:4.625

LS:40.000 forSP:3.312stockpilingSP:3.312ofSP:3.312surplusSP:3.312resourcesSP:3.312andSP:3.312thus,SP:3.560inevitably,SP:3.560theSP:3.312unequalSP:3.312stockpilingSP:3.312ofRS:50.000L__BS:4.625

LS:40.000 themSP:2.918—SP:2.918stratificationSP:2.918ofSP:2.918societySP:2.918andSP:2.918theSP:2.918inventionSP:2.918ofSP:2.918classes.SP:4.890Thus,SP:3.068itSP:2.918allowedSP:2.918forSP:2.918theRS:50.000L__BS:4.625

LS:40.000 inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isRS:50.000L__BS:4.625

LS:40.000 thatSP:2.410whenSP:2.410humansSP:2.410inventedSP:2.410poverty,SP:2.433theySP:2.410cameSP:2.410upSP:2.410withSP:2.410aSP:2.410waySP:2.410ofSP:2.410subjugatingSP:2.410theSP:2.410low-H__L__BS:4.625

LS:40.000 rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:125.049L____V

normalization 0, sample-2

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent =-20pt
\hangafter = -3

AgricultureSP:1.945isSP:1.945aSP:1.945fairlySP:1.945recentSP:1.945humanSP:1.945invention,SP:2.020andSP:1.945inSP:1.945manySP:1.945waysSP:1.945itSP:1.945wasSP:1.945oneSP:1.945ofSP:1.945theSP:1.945greatSP:1.945stupidSP:1.945movesRS:0.000L__BS:4.625

ofSP:3.899allSP:3.899time.SP:7.832Hunter-H__ gatherersSP:3.899haveSP:3.899thousandsSP:3.899ofSP:3.899wildSP:3.899sourcesSP:3.899ofSP:3.899foodSP:3.899toSP:3.899subsistSP:3.899on.SP:7.832AgricultureRS:0.000L__BS:4.625

changedSP:3.048thatSP:3.048all,SP:3.230generatingSP:3.048anSP:3.048overwhelmingSP:3.048relianceSP:3.048onSP:3.048aSP:3.048fewSP:3.048dozenSP:3.048domesticatedSP:3.048foodSP:3.048sources,RS:0.000L__BS:4.625

makingSP:2.753youSP:2.753extremelySP:2.753vulnerableSP:2.753toSP:2.753theSP:2.753nextSP:2.753famine,SP:2.862theSP:2.753nextSP:2.753locustSP:2.753infestation,SP:2.862theSP:2.753nextSP:2.753potatoSP:2.753blight.RS:0.000L__BS:4.625

AgricultureSP:2.649allowedSP:2.649forSP:2.649stockpilingSP:2.649ofSP:2.649surplusSP:2.649resourcesSP:2.649andSP:2.649thus,SP:2.732inevitably,SP:2.732theSP:2.649unequalSP:2.649stockpilingSP:2.649ofRS:0.000L__BS:4.625

themSP:2.223—SP:2.223stratificationSP:2.223ofSP:2.223societySP:2.223andSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223classes.SP:3.060Thus,SP:2.242itSP:2.223allowedSP:2.223forSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223poverty.RS:0.000L__BS:4.625

ISP:2.376thinkSP:2.376thatSP:2.376theSP:2.376punchSP:2.376lineSP:2.376ofSP:2.376theSP:2.376primate-H__ humanSP:2.376differenceSP:2.376isSP:2.376thatSP:2.376whenSP:2.376humansSP:2.376inventedSP:2.376poverty,SP:2.391theyRS:0.000L__BS:4.625

cameSP:2.319upSP:2.319withSP:2.319aSP:2.319waySP:2.319ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:9.692L____V

normalization 0, sample-3

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

Normalization 34

AgricultureSP:3.050isSP:3.050aSP:3.050fairlySP:3.050recentSP:3.050humanSP:3.050invention,SP:3.233andSP:3.050inSP:3.050manySP:3.050waysSP:3.050itSP:3.050wasSP:3.050oneSP:3.050ofSP:3.050theSP:3.050greatSP:3.050stupidSP:3.050movesRS:0.000L__BS:4.625

ofSP:2.581allSP:2.581time.SP:3.878Hunter-H__ gatherersSP:2.581haveSP:2.581thousandsSP:2.581ofSP:2.581wildSP:2.581sourcesSP:2.581ofSP:2.581foodSP:2.581toSP:2.581subsistSP:2.581on.SP:3.878AgricultureSP:2.581changedRS:0.000L__BS:4.625

thatSP:2.129all,SP:2.167generatingSP:2.129anSP:2.129overwhelmingSP:2.129relianceSP:2.129onSP:2.129aSP:2.129fewSP:2.129dozenSP:2.129domesticatedSP:2.129foodSP:2.129sources,SP:2.167makingSP:2.129youSP:2.129ex-L__BS:4.625

tremelySP:2.195vulnerableSP:2.195toSP:2.195theSP:2.195nextSP:2.195famine,SP:2.219theSP:2.195nextSP:2.195locustSP:2.195infestation,SP:2.219theSP:2.195nextSP:2.195potatoSP:2.195blight.SP:3.050AgricultureRS:0.000L__BS:4.625

allowedSP:2.600forSP:2.600stockpilingSP:2.600ofSP:2.600surplusSP:2.600resourcesSP:2.600andSP:2.600thus,SP:2.670inevitably,SP:2.670theSP:2.600unequalSP:2.600stockpilingSP:2.600ofSP:2.600themSP:2.600—RS:0.000L__BS:4.625

stratificationSP:2.797ofSP:2.797societySP:2.797andSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797classes.SP:4.526Thus,SP:2.916itSP:2.797allowedSP:2.797forSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797poverty.SP:4.526IRS:0.000L__BS:4.625

thinkSP:3.039thatSP:3.039theSP:3.039punchSP:3.039lineSP:3.039ofSP:3.039theSP:3.039primate-H__ humanSP:3.039differenceSP:3.039isSP:3.039thatSP:3.039whenSP:3.039humansSP:3.039inventedSP:3.039poverty,RS:0.000L__BS:4.625

theySP:2.266cameSP:2.266upSP:2.266withSP:2.266aSP:2.266waySP:2.266ofSP:2.266subjugatingSP:2.266theSP:2.266low-H__ rankingSP:2.266likeSP:2.266nothingSP:2.266everSP:2.266seenSP:2.266beforeSP:2.266inSP:2.266theSP:2.266primateRS:0.000L__BS:4.625

world.PF:447.560L____V

normalization 0, sample-4

\parindent = 0pt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

LS:10.000AgricultureSP:3.401isSP:3.401aSP:3.401fairlySP:3.401recentSP:3.401humanSP:3.401invention,SP:3.672andSP:3.401inSP:3.401manySP:3.401waysSP:3.401itSP:3.401wasSP:3.401oneSP:3.401ofSP:3.401theSP:3.401greatSP:3.401stu-L__BS:4.625

LS:10.000pidSP:3.204movesSP:3.204ofSP:3.204allSP:3.204time.SP:5.748Hunter-H__ gatherersSP:3.204haveSP:3.204thousandsSP:3.204ofSP:3.204wildSP:3.204sourcesSP:3.204ofSP:3.204foodSP:3.204toSP:3.204subsistSP:3.204on.RS:30.000L__BS:4.625

LS:10.000AgricultureSP:2.162changedSP:2.162thatSP:2.162all,SP:2.194generatingSP:2.162anSP:2.162overwhelmingSP:2.162relianceSP:2.162onSP:2.162aSP:2.162fewSP:2.162dozenSP:2.162domesticatedRS:30.000L__BS:4.625

LS:10.000foodSP:3.467sources,SP:3.753makingSP:3.467youSP:3.467extremelySP:3.467vulnerableSP:3.467toSP:3.467theSP:3.467nextSP:3.467famine,SP:3.753theSP:3.467nextSP:3.467locustSP:3.467infes-L__BS:4.625

LS:10.000tation,SP:3.054theSP:2.907nextSP:2.907potatoSP:2.907blight.SP:4.857AgricultureSP:2.907allowedSP:2.907forSP:2.907stockpilingSP:2.907ofSP:2.907surplusSP:2.907resourcesSP:2.907andRS:30.000L__BS:4.625

LS:10.000thus,SP:2.157inevitably,SP:2.157theSP:2.116unequalSP:2.116stockpilingSP:2.116ofSP:2.116themSP:2.116—SP:2.116stratificationSP:2.116ofSP:2.116societySP:2.116andSP:2.116theSP:2.116inventionRS:30.000L__BS:4.625

LS:10.000ofSP:3.175classes.SP:5.661Thus,SP:3.389itSP:3.175allowedSP:3.175forSP:3.175theSP:3.175inventionSP:3.175ofSP:3.175poverty.SP:5.661ISP:3.174thinkSP:3.175thatSP:3.175theSP:3.175punchSP:3.175lineSP:3.175ofSP:3.175theRS:30.000L__BS:4.625

LS:10.000primate-H__ humanSP:2.439differenceSP:2.439isSP:2.439thatSP:2.439whenSP:2.439humansSP:2.439inventedSP:2.439poverty,SP:2.469theySP:2.439cameSP:2.439upSP:2.439withSP:2.439aSP:2.439wayRS:30.000L__BS:4.625

LS:10.000ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:45.579L____V

You might have noticed that the right skip is always there but the left skip is absent when it is zero. As
said, as long as the result is okay, it does not really matter. But . . . in LuaTEX (and therefore ConTEXt) it
can have consequences because there we can kick in a callback that does something with lines. Such a
callback often has to deal with these specific glues and them being optional makes for more testing. The
more predictable the order is, the better. Although we can easily normalize lines (in a callback) to always
have a left skip too it is also an option in the engine.

normalization 1, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = 0pt
\hangafter = 0

35 Normalization

LS:40.000 H__ AgricultureSP:2.121isSP:2.121aSP:2.121fairlySP:2.121recentSP:2.121humanSP:2.121invention,SP:2.160andSP:2.121inSP:2.121manySP:2.121waysSP:2.121itSP:2.121wasSP:2.121oneSP:2.121ofSP:2.121theRS:50.000L__BS:4.625

LS:40.000 greatSP:3.213stupidSP:3.213movesSP:3.213ofSP:3.213allSP:3.213time.SP:5.774Hunter-H__ gatherersSP:3.213haveSP:3.213thousandsSP:3.213ofSP:3.213wildSP:3.213sourcesSP:3.213ofRS:50.000L__BS:4.625

LS:40.000 foodSP:2.171toSP:2.171subsistSP:2.171on.SP:3.042AgricultureSP:2.171changedSP:2.171thatSP:2.171all,SP:2.201generatingSP:2.171anSP:2.171overwhelmingSP:2.171relianceRS:50.000L__BS:4.625

LS:40.000 onSP:3.159aSP:3.159fewSP:3.159dozenSP:3.159domesticatedSP:3.159foodSP:3.159sources,SP:3.369makingSP:3.159youSP:3.159extremelySP:3.159vulnerableSP:3.159toSP:3.159theRS:50.000L__BS:4.625

LS:40.000 nextSP:3.231famine,SP:3.459theSP:3.231nextSP:3.231locustSP:3.231infestation,SP:3.459theSP:3.231nextSP:3.231potatoSP:3.231blight.SP:5.829AgricultureSP:3.231allowedRS:50.000L__BS:4.625

LS:40.000 forSP:3.312stockpilingSP:3.312ofSP:3.312surplusSP:3.312resourcesSP:3.312andSP:3.312thus,SP:3.560inevitably,SP:3.560theSP:3.312unequalSP:3.312stockpilingSP:3.312ofRS:50.000L__BS:4.625

LS:40.000 themSP:2.918—SP:2.918stratificationSP:2.918ofSP:2.918societySP:2.918andSP:2.918theSP:2.918inventionSP:2.918ofSP:2.918classes.SP:4.890Thus,SP:3.068itSP:2.918allowedSP:2.918forSP:2.918theRS:50.000L__BS:4.625

LS:40.000 inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isRS:50.000L__BS:4.625

LS:40.000 thatSP:2.410whenSP:2.410humansSP:2.410inventedSP:2.410poverty,SP:2.433theySP:2.410cameSP:2.410upSP:2.410withSP:2.410aSP:2.410waySP:2.410ofSP:2.410subjugatingSP:2.410theSP:2.410low-H__L__BS:4.625

LS:40.000 rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:125.049L____V

normalization 1, sample-2

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent =-20pt
\hangafter = -3

LS:0.000AgricultureSP:1.945isSP:1.945aSP:1.945fairlySP:1.945recentSP:1.945humanSP:1.945invention,SP:2.020andSP:1.945inSP:1.945manySP:1.945waysSP:1.945itSP:1.945wasSP:1.945oneSP:1.945ofSP:1.945theSP:1.945greatSP:1.945stupidSP:1.945movesRS:0.000L__BS:4.625

LS:0.000ofSP:3.899allSP:3.899time.SP:7.832Hunter-H__ gatherersSP:3.899haveSP:3.899thousandsSP:3.899ofSP:3.899wildSP:3.899sourcesSP:3.899ofSP:3.899foodSP:3.899toSP:3.899subsistSP:3.899on.SP:7.832AgricultureRS:0.000L__BS:4.625

LS:0.000changedSP:3.048thatSP:3.048all,SP:3.230generatingSP:3.048anSP:3.048overwhelmingSP:3.048relianceSP:3.048onSP:3.048aSP:3.048fewSP:3.048dozenSP:3.048domesticatedSP:3.048foodSP:3.048sources,RS:0.000L__BS:4.625

LS:0.000makingSP:2.753youSP:2.753extremelySP:2.753vulnerableSP:2.753toSP:2.753theSP:2.753nextSP:2.753famine,SP:2.862theSP:2.753nextSP:2.753locustSP:2.753infestation,SP:2.862theSP:2.753nextSP:2.753potatoSP:2.753blight.RS:0.000L__BS:4.625

LS:0.000AgricultureSP:2.649allowedSP:2.649forSP:2.649stockpilingSP:2.649ofSP:2.649surplusSP:2.649resourcesSP:2.649andSP:2.649thus,SP:2.732inevitably,SP:2.732theSP:2.649unequalSP:2.649stockpilingSP:2.649ofRS:0.000L__BS:4.625

LS:0.000themSP:2.223—SP:2.223stratificationSP:2.223ofSP:2.223societySP:2.223andSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223classes.SP:3.060Thus,SP:2.242itSP:2.223allowedSP:2.223forSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223poverty.RS:0.000L__BS:4.625

LS:0.000ISP:2.376thinkSP:2.376thatSP:2.376theSP:2.376punchSP:2.376lineSP:2.376ofSP:2.376theSP:2.376primate-H__ humanSP:2.376differenceSP:2.376isSP:2.376thatSP:2.376whenSP:2.376humansSP:2.376inventedSP:2.376poverty,SP:2.391theyRS:0.000L__BS:4.625

LS:0.000cameSP:2.319upSP:2.319withSP:2.319aSP:2.319waySP:2.319ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:9.692L____V

normalization 1, sample-3

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

LS:0.000AgricultureSP:3.050isSP:3.050aSP:3.050fairlySP:3.050recentSP:3.050humanSP:3.050invention,SP:3.233andSP:3.050inSP:3.050manySP:3.050waysSP:3.050itSP:3.050wasSP:3.050oneSP:3.050ofSP:3.050theSP:3.050greatSP:3.050stupidSP:3.050movesRS:0.000L__BS:4.625

LS:0.000ofSP:2.581allSP:2.581time.SP:3.878Hunter-H__ gatherersSP:2.581haveSP:2.581thousandsSP:2.581ofSP:2.581wildSP:2.581sourcesSP:2.581ofSP:2.581foodSP:2.581toSP:2.581subsistSP:2.581on.SP:3.878AgricultureSP:2.581changedRS:0.000L__BS:4.625

LS:0.000thatSP:2.129all,SP:2.167generatingSP:2.129anSP:2.129overwhelmingSP:2.129relianceSP:2.129onSP:2.129aSP:2.129fewSP:2.129dozenSP:2.129domesticatedSP:2.129foodSP:2.129sources,SP:2.167makingSP:2.129youSP:2.129ex-L__BS:4.625

LS:0.000tremelySP:2.195vulnerableSP:2.195toSP:2.195theSP:2.195nextSP:2.195famine,SP:2.219theSP:2.195nextSP:2.195locustSP:2.195infestation,SP:2.219theSP:2.195nextSP:2.195potatoSP:2.195blight.SP:3.050AgricultureRS:0.000L__BS:4.625

LS:0.000allowedSP:2.600forSP:2.600stockpilingSP:2.600ofSP:2.600surplusSP:2.600resourcesSP:2.600andSP:2.600thus,SP:2.670inevitably,SP:2.670theSP:2.600unequalSP:2.600stockpilingSP:2.600ofSP:2.600themSP:2.600—RS:0.000L__BS:4.625

LS:0.000stratificationSP:2.797ofSP:2.797societySP:2.797andSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797classes.SP:4.526Thus,SP:2.916itSP:2.797allowedSP:2.797forSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797poverty.SP:4.526IRS:0.000L__BS:4.625

LS:0.000thinkSP:3.039thatSP:3.039theSP:3.039punchSP:3.039lineSP:3.039ofSP:3.039theSP:3.039primate-H__ humanSP:3.039differenceSP:3.039isSP:3.039thatSP:3.039whenSP:3.039humansSP:3.039inventedSP:3.039poverty,RS:0.000L__BS:4.625

LS:0.000theySP:2.266cameSP:2.266upSP:2.266withSP:2.266aSP:2.266waySP:2.266ofSP:2.266subjugatingSP:2.266theSP:2.266low-H__ rankingSP:2.266likeSP:2.266nothingSP:2.266everSP:2.266seenSP:2.266beforeSP:2.266inSP:2.266theSP:2.266primateRS:0.000L__BS:4.625

LS:0.000world.PF:447.560L____V

normalization 1, sample-4

\parindent = 0pt
\leftskip = 10pt

Normalization 36

\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

LS:10.000AgricultureSP:3.401isSP:3.401aSP:3.401fairlySP:3.401recentSP:3.401humanSP:3.401invention,SP:3.672andSP:3.401inSP:3.401manySP:3.401waysSP:3.401itSP:3.401wasSP:3.401oneSP:3.401ofSP:3.401theSP:3.401greatSP:3.401stu-L__BS:4.625

LS:10.000pidSP:3.204movesSP:3.204ofSP:3.204allSP:3.204time.SP:5.748Hunter-H__ gatherersSP:3.204haveSP:3.204thousandsSP:3.204ofSP:3.204wildSP:3.204sourcesSP:3.204ofSP:3.204foodSP:3.204toSP:3.204subsistSP:3.204on.RS:30.000L__BS:4.625

LS:10.000AgricultureSP:2.162changedSP:2.162thatSP:2.162all,SP:2.194generatingSP:2.162anSP:2.162overwhelmingSP:2.162relianceSP:2.162onSP:2.162aSP:2.162fewSP:2.162dozenSP:2.162domesticatedRS:30.000L__BS:4.625

LS:10.000foodSP:3.467sources,SP:3.753makingSP:3.467youSP:3.467extremelySP:3.467vulnerableSP:3.467toSP:3.467theSP:3.467nextSP:3.467famine,SP:3.753theSP:3.467nextSP:3.467locustSP:3.467infes-L__BS:4.625

LS:10.000tation,SP:3.054theSP:2.907nextSP:2.907potatoSP:2.907blight.SP:4.857AgricultureSP:2.907allowedSP:2.907forSP:2.907stockpilingSP:2.907ofSP:2.907surplusSP:2.907resourcesSP:2.907andRS:30.000L__BS:4.625

LS:10.000thus,SP:2.157inevitably,SP:2.157theSP:2.116unequalSP:2.116stockpilingSP:2.116ofSP:2.116themSP:2.116—SP:2.116stratificationSP:2.116ofSP:2.116societySP:2.116andSP:2.116theSP:2.116inventionRS:30.000L__BS:4.625

LS:10.000ofSP:3.175classes.SP:5.661Thus,SP:3.389itSP:3.175allowedSP:3.175forSP:3.175theSP:3.175inventionSP:3.175ofSP:3.175poverty.SP:5.661ISP:3.174thinkSP:3.175thatSP:3.175theSP:3.175punchSP:3.175lineSP:3.175ofSP:3.175theRS:30.000L__BS:4.625

LS:10.000primate-H__ humanSP:2.439differenceSP:2.439isSP:2.439thatSP:2.439whenSP:2.439humansSP:2.439inventedSP:2.439poverty,SP:2.469theySP:2.439cameSP:2.439upSP:2.439withSP:2.439aSP:2.439wayRS:30.000L__BS:4.625

LS:10.000ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:45.579L____V

In the previous examples there are always left skips as well as right skips. It makes no sense to have an
option to omit both zero left and right skips, because that again is unpredictable. But we can go further.

normalization 2, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = 0pt
\hangafter = 0

LS:40.000 IN:20.000 AgricultureSP:2.121isSP:2.121aSP:2.121fairlySP:2.121recentSP:2.121humanSP:2.121invention,SP:2.160andSP:2.121inSP:2.121manySP:2.121waysSP:2.121itSP:2.121wasSP:2.121oneSP:2.121ofSP:2.121theRS:50.000L__BS:4.625

LS:40.000 greatSP:3.213stupidSP:3.213movesSP:3.213ofSP:3.213allSP:3.213time.SP:5.774Hunter-H__ gatherersSP:3.213haveSP:3.213thousandsSP:3.213ofSP:3.213wildSP:3.213sourcesSP:3.213ofRS:50.000L__BS:4.625

LS:40.000 foodSP:2.171toSP:2.171subsistSP:2.171on.SP:3.042AgricultureSP:2.171changedSP:2.171thatSP:2.171all,SP:2.201generatingSP:2.171anSP:2.171overwhelmingSP:2.171relianceRS:50.000L__BS:4.625

LS:40.000 onSP:3.159aSP:3.159fewSP:3.159dozenSP:3.159domesticatedSP:3.159foodSP:3.159sources,SP:3.369makingSP:3.159youSP:3.159extremelySP:3.159vulnerableSP:3.159toSP:3.159theRS:50.000L__BS:4.625

LS:40.000 nextSP:3.231famine,SP:3.459theSP:3.231nextSP:3.231locustSP:3.231infestation,SP:3.459theSP:3.231nextSP:3.231potatoSP:3.231blight.SP:5.829AgricultureSP:3.231allowedRS:50.000L__BS:4.625

LS:40.000 forSP:3.312stockpilingSP:3.312ofSP:3.312surplusSP:3.312resourcesSP:3.312andSP:3.312thus,SP:3.560inevitably,SP:3.560theSP:3.312unequalSP:3.312stockpilingSP:3.312ofRS:50.000L__BS:4.625

LS:40.000 themSP:2.918—SP:2.918stratificationSP:2.918ofSP:2.918societySP:2.918andSP:2.918theSP:2.918inventionSP:2.918ofSP:2.918classes.SP:4.890Thus,SP:3.068itSP:2.918allowedSP:2.918forSP:2.918theRS:50.000L__BS:4.625

LS:40.000 inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isRS:50.000L__BS:4.625

LS:40.000 thatSP:2.410whenSP:2.410humansSP:2.410inventedSP:2.410poverty,SP:2.433theySP:2.410cameSP:2.410upSP:2.410withSP:2.410aSP:2.410waySP:2.410ofSP:2.410subjugatingSP:2.410theSP:2.410low-H__L__BS:4.625

LS:40.000 rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:125.049L____V

normalization 2, sample-2

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent =-20pt
\hangafter = -3

LS:0.000IN:0.000AgricultureSP:1.945isSP:1.945aSP:1.945fairlySP:1.945recentSP:1.945humanSP:1.945invention,SP:2.020andSP:1.945inSP:1.945manySP:1.945waysSP:1.945itSP:1.945wasSP:1.945oneSP:1.945ofSP:1.945theSP:1.945greatSP:1.945stupidSP:1.945movesRS:0.000L__BS:4.625

LS:0.000ofSP:3.899allSP:3.899time.SP:7.832Hunter-H__ gatherersSP:3.899haveSP:3.899thousandsSP:3.899ofSP:3.899wildSP:3.899sourcesSP:3.899ofSP:3.899foodSP:3.899toSP:3.899subsistSP:3.899on.SP:7.832AgricultureRS:0.000L__BS:4.625

LS:0.000changedSP:3.048thatSP:3.048all,SP:3.230generatingSP:3.048anSP:3.048overwhelmingSP:3.048relianceSP:3.048onSP:3.048aSP:3.048fewSP:3.048dozenSP:3.048domesticatedSP:3.048foodSP:3.048sources,RS:0.000L__BS:4.625

LS:0.000makingSP:2.753youSP:2.753extremelySP:2.753vulnerableSP:2.753toSP:2.753theSP:2.753nextSP:2.753famine,SP:2.862theSP:2.753nextSP:2.753locustSP:2.753infestation,SP:2.862theSP:2.753nextSP:2.753potatoSP:2.753blight.RS:0.000L__BS:4.625

LS:0.000AgricultureSP:2.649allowedSP:2.649forSP:2.649stockpilingSP:2.649ofSP:2.649surplusSP:2.649resourcesSP:2.649andSP:2.649thus,SP:2.732inevitably,SP:2.732theSP:2.649unequalSP:2.649stockpilingSP:2.649ofRS:0.000L__BS:4.625

LS:0.000themSP:2.223—SP:2.223stratificationSP:2.223ofSP:2.223societySP:2.223andSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223classes.SP:3.060Thus,SP:2.242itSP:2.223allowedSP:2.223forSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223poverty.RS:0.000L__BS:4.625

LS:0.000ISP:2.376thinkSP:2.376thatSP:2.376theSP:2.376punchSP:2.376lineSP:2.376ofSP:2.376theSP:2.376primate-H__ humanSP:2.376differenceSP:2.376isSP:2.376thatSP:2.376whenSP:2.376humansSP:2.376inventedSP:2.376poverty,SP:2.391theyRS:0.000L__BS:4.625

LS:0.000cameSP:2.319upSP:2.319withSP:2.319aSP:2.319waySP:2.319ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:9.692L____V

37 Normalization

normalization 2, sample-3

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

LS:0.000IN:0.000AgricultureSP:3.050isSP:3.050aSP:3.050fairlySP:3.050recentSP:3.050humanSP:3.050invention,SP:3.233andSP:3.050inSP:3.050manySP:3.050waysSP:3.050itSP:3.050wasSP:3.050oneSP:3.050ofSP:3.050theSP:3.050greatSP:3.050stupidSP:3.050movesRS:0.000L__BS:4.625

LS:0.000ofSP:2.581allSP:2.581time.SP:3.878Hunter-H__ gatherersSP:2.581haveSP:2.581thousandsSP:2.581ofSP:2.581wildSP:2.581sourcesSP:2.581ofSP:2.581foodSP:2.581toSP:2.581subsistSP:2.581on.SP:3.878AgricultureSP:2.581changedRS:0.000L__BS:4.625

LS:0.000thatSP:2.129all,SP:2.167generatingSP:2.129anSP:2.129overwhelmingSP:2.129relianceSP:2.129onSP:2.129aSP:2.129fewSP:2.129dozenSP:2.129domesticatedSP:2.129foodSP:2.129sources,SP:2.167makingSP:2.129youSP:2.129ex-L__BS:4.625

LS:0.000tremelySP:2.195vulnerableSP:2.195toSP:2.195theSP:2.195nextSP:2.195famine,SP:2.219theSP:2.195nextSP:2.195locustSP:2.195infestation,SP:2.219theSP:2.195nextSP:2.195potatoSP:2.195blight.SP:3.050AgricultureRS:0.000L__BS:4.625

LS:0.000allowedSP:2.600forSP:2.600stockpilingSP:2.600ofSP:2.600surplusSP:2.600resourcesSP:2.600andSP:2.600thus,SP:2.670inevitably,SP:2.670theSP:2.600unequalSP:2.600stockpilingSP:2.600ofSP:2.600themSP:2.600—RS:0.000L__BS:4.625

LS:0.000stratificationSP:2.797ofSP:2.797societySP:2.797andSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797classes.SP:4.526Thus,SP:2.916itSP:2.797allowedSP:2.797forSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797poverty.SP:4.526IRS:0.000L__BS:4.625

LS:0.000thinkSP:3.039thatSP:3.039theSP:3.039punchSP:3.039lineSP:3.039ofSP:3.039theSP:3.039primate-H__ humanSP:3.039differenceSP:3.039isSP:3.039thatSP:3.039whenSP:3.039humansSP:3.039inventedSP:3.039poverty,RS:0.000L__BS:4.625

LS:0.000theySP:2.266cameSP:2.266upSP:2.266withSP:2.266aSP:2.266waySP:2.266ofSP:2.266subjugatingSP:2.266theSP:2.266low-H__ rankingSP:2.266likeSP:2.266nothingSP:2.266everSP:2.266seenSP:2.266beforeSP:2.266inSP:2.266theSP:2.266primateRS:0.000L__BS:4.625

LS:0.000world.PF:447.560L____V

normalization 2, sample-4

\parindent = 0pt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

LS:10.000IN:0.000AgricultureSP:3.401isSP:3.401aSP:3.401fairlySP:3.401recentSP:3.401humanSP:3.401invention,SP:3.672andSP:3.401inSP:3.401manySP:3.401waysSP:3.401itSP:3.401wasSP:3.401oneSP:3.401ofSP:3.401theSP:3.401greatSP:3.401stu-L__BS:4.625

LS:10.000pidSP:3.204movesSP:3.204ofSP:3.204allSP:3.204time.SP:5.748Hunter-H__ gatherersSP:3.204haveSP:3.204thousandsSP:3.204ofSP:3.204wildSP:3.204sourcesSP:3.204ofSP:3.204foodSP:3.204toSP:3.204subsistSP:3.204on.RS:30.000L__BS:4.625

LS:10.000AgricultureSP:2.162changedSP:2.162thatSP:2.162all,SP:2.194generatingSP:2.162anSP:2.162overwhelmingSP:2.162relianceSP:2.162onSP:2.162aSP:2.162fewSP:2.162dozenSP:2.162domesticatedRS:30.000L__BS:4.625

LS:10.000foodSP:3.467sources,SP:3.753makingSP:3.467youSP:3.467extremelySP:3.467vulnerableSP:3.467toSP:3.467theSP:3.467nextSP:3.467famine,SP:3.753theSP:3.467nextSP:3.467locustSP:3.467infes-L__BS:4.625

LS:10.000tation,SP:3.054theSP:2.907nextSP:2.907potatoSP:2.907blight.SP:4.857AgricultureSP:2.907allowedSP:2.907forSP:2.907stockpilingSP:2.907ofSP:2.907surplusSP:2.907resourcesSP:2.907andRS:30.000L__BS:4.625

LS:10.000thus,SP:2.157inevitably,SP:2.157theSP:2.116unequalSP:2.116stockpilingSP:2.116ofSP:2.116themSP:2.116—SP:2.116stratificationSP:2.116ofSP:2.116societySP:2.116andSP:2.116theSP:2.116inventionRS:30.000L__BS:4.625

LS:10.000ofSP:3.175classes.SP:5.661Thus,SP:3.389itSP:3.175allowedSP:3.175forSP:3.175theSP:3.175inventionSP:3.175ofSP:3.175poverty.SP:5.661ISP:3.174thinkSP:3.175thatSP:3.175theSP:3.175punchSP:3.175lineSP:3.175ofSP:3.175theRS:30.000L__BS:4.625

LS:10.000primate-H__ humanSP:2.439differenceSP:2.439isSP:2.439thatSP:2.439whenSP:2.439humansSP:2.439inventedSP:2.439poverty,SP:2.469theySP:2.439cameSP:2.439upSP:2.439withSP:2.439aSP:2.439wayRS:30.000L__BS:4.625

LS:10.000ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:45.579L____V

In these examples the indentation has been turned into a glue as well (actually it ismore a kern but using
a glue makes more sense). The hanging indentation however is not seen here: it is not represented by
glue but instead sort of hidden in the width of the box and a shift of its content.

normalization 3, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = 0pt
\hangafter = 0

Normalization 38

LH:0.000LS:40.000 IN:20.000 AgricultureSP:2.121isSP:2.121aSP:2.121fairlySP:2.121recentSP:2.121humanSP:2.121invention,SP:2.160andSP:2.121inSP:2.121manySP:2.121waysSP:2.121itSP:2.121wasSP:2.121oneSP:2.121ofSP:2.121theRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 greatSP:3.213stupidSP:3.213movesSP:3.213ofSP:3.213allSP:3.213time.SP:5.774Hunter-H__ gatherersSP:3.213haveSP:3.213thousandsSP:3.213ofSP:3.213wildSP:3.213sourcesSP:3.213ofRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 foodSP:2.171toSP:2.171subsistSP:2.171on.SP:3.042AgricultureSP:2.171changedSP:2.171thatSP:2.171all,SP:2.201generatingSP:2.171anSP:2.171overwhelmingSP:2.171relianceRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 onSP:3.159aSP:3.159fewSP:3.159dozenSP:3.159domesticatedSP:3.159foodSP:3.159sources,SP:3.369makingSP:3.159youSP:3.159extremelySP:3.159vulnerableSP:3.159toSP:3.159theRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 nextSP:3.231famine,SP:3.459theSP:3.231nextSP:3.231locustSP:3.231infestation,SP:3.459theSP:3.231nextSP:3.231potatoSP:3.231blight.SP:5.829AgricultureSP:3.231allowedRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 forSP:3.312stockpilingSP:3.312ofSP:3.312surplusSP:3.312resourcesSP:3.312andSP:3.312thus,SP:3.560inevitably,SP:3.560theSP:3.312unequalSP:3.312stockpilingSP:3.312ofRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 themSP:2.918—SP:2.918stratificationSP:2.918ofSP:2.918societySP:2.918andSP:2.918theSP:2.918inventionSP:2.918ofSP:2.918classes.SP:4.890Thus,SP:3.068itSP:2.918allowedSP:2.918forSP:2.918theRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isRS:50.000 RH:0.000L__BS:4.625

LH:0.000LS:40.000 thatSP:2.410whenSP:2.410humansSP:2.410inventedSP:2.410poverty,SP:2.433theySP:2.410cameSP:2.410upSP:2.410withSP:2.410aSP:2.410waySP:2.410ofSP:2.410subjugatingSP:2.410theSP:2.410low-H__ RH:0.000L__BS:4.625

LH:0.000LS:40.000 rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:125.049 RH:0.000L____V

normalization 3, sample-2

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent =-20pt
\hangafter = -3

LH:0.000LS:0.000IN:0.000AgricultureSP:1.945isSP:1.945aSP:1.945fairlySP:1.945recentSP:1.945humanSP:1.945invention,SP:2.020andSP:1.945inSP:1.945manySP:1.945waysSP:1.945itSP:1.945wasSP:1.945oneSP:1.945ofSP:1.945theSP:1.945greatSP:1.945stupidSP:1.945movesRS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000ofSP:3.899allSP:3.899time.SP:7.832Hunter-H__ gatherersSP:3.899haveSP:3.899thousandsSP:3.899ofSP:3.899wildSP:3.899sourcesSP:3.899ofSP:3.899foodSP:3.899toSP:3.899subsistSP:3.899on.SP:7.832AgricultureRS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000changedSP:3.048thatSP:3.048all,SP:3.230generatingSP:3.048anSP:3.048overwhelmingSP:3.048relianceSP:3.048onSP:3.048aSP:3.048fewSP:3.048dozenSP:3.048domesticatedSP:3.048foodSP:3.048sources,RS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000makingSP:2.753youSP:2.753extremelySP:2.753vulnerableSP:2.753toSP:2.753theSP:2.753nextSP:2.753famine,SP:2.862theSP:2.753nextSP:2.753locustSP:2.753infestation,SP:2.862theSP:2.753nextSP:2.753potatoSP:2.753blight.RS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000AgricultureSP:2.649allowedSP:2.649forSP:2.649stockpilingSP:2.649ofSP:2.649surplusSP:2.649resourcesSP:2.649andSP:2.649thus,SP:2.732inevitably,SP:2.732theSP:2.649unequalSP:2.649stockpilingSP:2.649ofRS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000themSP:2.223—SP:2.223stratificationSP:2.223ofSP:2.223societySP:2.223andSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223classes.SP:3.060Thus,SP:2.242itSP:2.223allowedSP:2.223forSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223poverty.RS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000ISP:2.376thinkSP:2.376thatSP:2.376theSP:2.376punchSP:2.376lineSP:2.376ofSP:2.376theSP:2.376primate-H__ humanSP:2.376differenceSP:2.376isSP:2.376thatSP:2.376whenSP:2.376humansSP:2.376inventedSP:2.376poverty,SP:2.391theyRS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000cameSP:2.319upSP:2.319withSP:2.319aSP:2.319waySP:2.319ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:9.692RH:0.000L____V

normalization 3, sample-3

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

LH:0.000LS:0.000IN:0.000AgricultureSP:3.050isSP:3.050aSP:3.050fairlySP:3.050recentSP:3.050humanSP:3.050invention,SP:3.233andSP:3.050inSP:3.050manySP:3.050waysSP:3.050itSP:3.050wasSP:3.050oneSP:3.050ofSP:3.050theSP:3.050greatSP:3.050stupidSP:3.050movesRS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000ofSP:2.581allSP:2.581time.SP:3.878Hunter-H__ gatherersSP:2.581haveSP:2.581thousandsSP:2.581ofSP:2.581wildSP:2.581sourcesSP:2.581ofSP:2.581foodSP:2.581toSP:2.581subsistSP:2.581on.SP:3.878AgricultureSP:2.581changedRS:0.000RH:0.000L__BS:4.625

LH:0.000LS:0.000thatSP:2.129all,SP:2.167generatingSP:2.129anSP:2.129overwhelmingSP:2.129relianceSP:2.129onSP:2.129aSP:2.129fewSP:2.129dozenSP:2.129domesticatedSP:2.129foodSP:2.129sources,SP:2.167makingSP:2.129youSP:2.129ex-RH:0.000L__BS:4.625

LH:20.000 LS:0.000tremelySP:2.195vulnerableSP:2.195toSP:2.195theSP:2.195nextSP:2.195famine,SP:2.219theSP:2.195nextSP:2.195locustSP:2.195infestation,SP:2.219theSP:2.195nextSP:2.195potatoSP:2.195blight.SP:3.050AgricultureRS:0.000RH:0.000L__BS:4.625

LH:20.000 LS:0.000allowedSP:2.600forSP:2.600stockpilingSP:2.600ofSP:2.600surplusSP:2.600resourcesSP:2.600andSP:2.600thus,SP:2.670inevitably,SP:2.670theSP:2.600unequalSP:2.600stockpilingSP:2.600ofSP:2.600themSP:2.600—RS:0.000RH:0.000L__BS:4.625

LH:20.000 LS:0.000stratificationSP:2.797ofSP:2.797societySP:2.797andSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797classes.SP:4.526Thus,SP:2.916itSP:2.797allowedSP:2.797forSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797poverty.SP:4.526IRS:0.000RH:0.000L__BS:4.625

LH:20.000 LS:0.000thinkSP:3.039thatSP:3.039theSP:3.039punchSP:3.039lineSP:3.039ofSP:3.039theSP:3.039primate-H__ humanSP:3.039differenceSP:3.039isSP:3.039thatSP:3.039whenSP:3.039humansSP:3.039inventedSP:3.039poverty,RS:0.000RH:0.000L__BS:4.625

LH:20.000 LS:0.000theySP:2.266cameSP:2.266upSP:2.266withSP:2.266aSP:2.266waySP:2.266ofSP:2.266subjugatingSP:2.266theSP:2.266low-H__ rankingSP:2.266likeSP:2.266nothingSP:2.266everSP:2.266seenSP:2.266beforeSP:2.266inSP:2.266theSP:2.266primateRS:0.000RH:0.000L__BS:4.625

LH:20.000 LS:0.000world.PF:447.560 RH:0.000L____V

normalization 3, sample-4

\parindent = 0pt
\leftskip = 10pt

39 Normalization

\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

LH:0.000LS:10.000IN:0.000AgricultureSP:3.401isSP:3.401aSP:3.401fairlySP:3.401recentSP:3.401humanSP:3.401invention,SP:3.672andSP:3.401inSP:3.401manySP:3.401waysSP:3.401itSP:3.401wasSP:3.401oneSP:3.401ofSP:3.401theSP:3.401greatSP:3.401stu- RH:0.000L__BS:4.625

LH:0.000LS:10.000pidSP:3.204movesSP:3.204ofSP:3.204allSP:3.204time.SP:5.748Hunter-H__ gatherersSP:3.204haveSP:3.204thousandsSP:3.204ofSP:3.204wildSP:3.204sourcesSP:3.204ofSP:3.204foodSP:3.204toSP:3.204subsistSP:3.204on.RS:30.000 RH:0.000L__BS:4.625

LH:0.000LS:10.000AgricultureSP:2.162changedSP:2.162thatSP:2.162all,SP:2.194generatingSP:2.162anSP:2.162overwhelmingSP:2.162relianceSP:2.162onSP:2.162aSP:2.162fewSP:2.162dozenSP:2.162domesticatedRS:30.000 RH:0.000L__BS:4.625

LH:20.000 LS:10.000foodSP:3.467sources,SP:3.753makingSP:3.467youSP:3.467extremelySP:3.467vulnerableSP:3.467toSP:3.467theSP:3.467nextSP:3.467famine,SP:3.753theSP:3.467nextSP:3.467locustSP:3.467infes- RH:0.000L__BS:4.625

LH:20.000 LS:10.000tation,SP:3.054theSP:2.907nextSP:2.907potatoSP:2.907blight.SP:4.857AgricultureSP:2.907allowedSP:2.907forSP:2.907stockpilingSP:2.907ofSP:2.907surplusSP:2.907resourcesSP:2.907andRS:30.000 RH:0.000L__BS:4.625

LH:20.000 LS:10.000thus,SP:2.157inevitably,SP:2.157theSP:2.116unequalSP:2.116stockpilingSP:2.116ofSP:2.116themSP:2.116—SP:2.116stratificationSP:2.116ofSP:2.116societySP:2.116andSP:2.116theSP:2.116inventionRS:30.000 RH:0.000L__BS:4.625

LH:20.000 LS:10.000ofSP:3.175classes.SP:5.661Thus,SP:3.389itSP:3.175allowedSP:3.175forSP:3.175theSP:3.175inventionSP:3.175ofSP:3.175poverty.SP:5.661ISP:3.174thinkSP:3.175thatSP:3.175theSP:3.175punchSP:3.175lineSP:3.175ofSP:3.175theRS:30.000 RH:0.000L__BS:4.625

LH:20.000 LS:10.000primate-H__ humanSP:2.439differenceSP:2.439isSP:2.439thatSP:2.439whenSP:2.439humansSP:2.439inventedSP:2.439poverty,SP:2.469theySP:2.439cameSP:2.439upSP:2.439withSP:2.439aSP:2.439wayRS:30.000 RH:0.000L__BS:4.625

LH:20.000 LS:10.000ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:45.579 RH:0.000L____V

In the previous examples the hanging indentation is turned into left and right hang skips. These cannot
be set at the TEX end, but are injected when we instruct the normalizer to do so.

normalization 4, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = 0pt
\hangafter = 0

LS:40.000 LH:0.000IN:20.000 AgricultureSP:2.121isSP:2.121aSP:2.121fairlySP:2.121recentSP:2.121humanSP:2.121invention,SP:2.160andSP:2.121inSP:2.121manySP:2.121waysSP:2.121itSP:2.121wasSP:2.121oneSP:2.121ofSP:2.121theRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000greatSP:3.213stupidSP:3.213movesSP:3.213ofSP:3.213allSP:3.213time.SP:5.774Hunter-H__ gatherersSP:3.213haveSP:3.213thousandsSP:3.213ofSP:3.213wildSP:3.213sourcesSP:3.213ofRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000foodSP:2.171toSP:2.171subsistSP:2.171on.SP:3.042AgricultureSP:2.171changedSP:2.171thatSP:2.171all,SP:2.201generatingSP:2.171anSP:2.171overwhelmingSP:2.171relianceRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000onSP:3.159aSP:3.159fewSP:3.159dozenSP:3.159domesticatedSP:3.159foodSP:3.159sources,SP:3.369makingSP:3.159youSP:3.159extremelySP:3.159vulnerableSP:3.159toSP:3.159theRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000nextSP:3.231famine,SP:3.459theSP:3.231nextSP:3.231locustSP:3.231infestation,SP:3.459theSP:3.231nextSP:3.231potatoSP:3.231blight.SP:5.829AgricultureSP:3.231allowedRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000forSP:3.312stockpilingSP:3.312ofSP:3.312surplusSP:3.312resourcesSP:3.312andSP:3.312thus,SP:3.560inevitably,SP:3.560theSP:3.312unequalSP:3.312stockpilingSP:3.312ofRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000themSP:2.918—SP:2.918stratificationSP:2.918ofSP:2.918societySP:2.918andSP:2.918theSP:2.918inventionSP:2.918ofSP:2.918classes.SP:4.890Thus,SP:3.068itSP:2.918allowedSP:2.918forSP:2.918theRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isRH:0.000RS:50.000L__BS:4.625

LS:40.000 LH:0.000thatSP:2.410whenSP:2.410humansSP:2.410inventedSP:2.410poverty,SP:2.433theySP:2.410cameSP:2.410upSP:2.410withSP:2.410aSP:2.410waySP:2.410ofSP:2.410subjugatingSP:2.410theSP:2.410low-H__ RH:0.000L__BS:4.625

LS:40.000 LH:0.000rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:125.049 RH:0.000L____V

normalization 4, sample-2

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent =-20pt
\hangafter = -3

LS:0.000LH:0.000IN:0.000AgricultureSP:1.945isSP:1.945aSP:1.945fairlySP:1.945recentSP:1.945humanSP:1.945invention,SP:2.020andSP:1.945inSP:1.945manySP:1.945waysSP:1.945itSP:1.945wasSP:1.945oneSP:1.945ofSP:1.945theSP:1.945greatSP:1.945stupidSP:1.945movesRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000ofSP:3.899allSP:3.899time.SP:7.832Hunter-H__ gatherersSP:3.899haveSP:3.899thousandsSP:3.899ofSP:3.899wildSP:3.899sourcesSP:3.899ofSP:3.899foodSP:3.899toSP:3.899subsistSP:3.899on.SP:7.832AgricultureRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000changedSP:3.048thatSP:3.048all,SP:3.230generatingSP:3.048anSP:3.048overwhelmingSP:3.048relianceSP:3.048onSP:3.048aSP:3.048fewSP:3.048dozenSP:3.048domesticatedSP:3.048foodSP:3.048sources,RH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000makingSP:2.753youSP:2.753extremelySP:2.753vulnerableSP:2.753toSP:2.753theSP:2.753nextSP:2.753famine,SP:2.862theSP:2.753nextSP:2.753locustSP:2.753infestation,SP:2.862theSP:2.753nextSP:2.753potatoSP:2.753blight.RH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000AgricultureSP:2.649allowedSP:2.649forSP:2.649stockpilingSP:2.649ofSP:2.649surplusSP:2.649resourcesSP:2.649andSP:2.649thus,SP:2.732inevitably,SP:2.732theSP:2.649unequalSP:2.649stockpilingSP:2.649ofRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000themSP:2.223—SP:2.223stratificationSP:2.223ofSP:2.223societySP:2.223andSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223classes.SP:3.060Thus,SP:2.242itSP:2.223allowedSP:2.223forSP:2.223theSP:2.223inventionSP:2.223ofSP:2.223poverty.RH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000ISP:2.376thinkSP:2.376thatSP:2.376theSP:2.376punchSP:2.376lineSP:2.376ofSP:2.376theSP:2.376primate-H__ humanSP:2.376differenceSP:2.376isSP:2.376thatSP:2.376whenSP:2.376humansSP:2.376inventedSP:2.376poverty,SP:2.391theyRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000cameSP:2.319upSP:2.319withSP:2.319aSP:2.319waySP:2.319ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:9.692RH:0.000L____V

Normalization 40

normalization 4, sample-3

\parindent = 0pt
\leftskip = 0pt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

LS:0.000LH:0.000IN:0.000AgricultureSP:3.050isSP:3.050aSP:3.050fairlySP:3.050recentSP:3.050humanSP:3.050invention,SP:3.233andSP:3.050inSP:3.050manySP:3.050waysSP:3.050itSP:3.050wasSP:3.050oneSP:3.050ofSP:3.050theSP:3.050greatSP:3.050stupidSP:3.050movesRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000ofSP:2.581allSP:2.581time.SP:3.878Hunter-H__ gatherersSP:2.581haveSP:2.581thousandsSP:2.581ofSP:2.581wildSP:2.581sourcesSP:2.581ofSP:2.581foodSP:2.581toSP:2.581subsistSP:2.581on.SP:3.878AgricultureSP:2.581changedRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000thatSP:2.129all,SP:2.167generatingSP:2.129anSP:2.129overwhelmingSP:2.129relianceSP:2.129onSP:2.129aSP:2.129fewSP:2.129dozenSP:2.129domesticatedSP:2.129foodSP:2.129sources,SP:2.167makingSP:2.129youSP:2.129ex-RH:0.000L__BS:4.625

LS:0.000LH:20.000 tremelySP:2.195vulnerableSP:2.195toSP:2.195theSP:2.195nextSP:2.195famine,SP:2.219theSP:2.195nextSP:2.195locustSP:2.195infestation,SP:2.219theSP:2.195nextSP:2.195potatoSP:2.195blight.SP:3.050AgricultureRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 allowedSP:2.600forSP:2.600stockpilingSP:2.600ofSP:2.600surplusSP:2.600resourcesSP:2.600andSP:2.600thus,SP:2.670inevitably,SP:2.670theSP:2.600unequalSP:2.600stockpilingSP:2.600ofSP:2.600themSP:2.600—RH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 stratificationSP:2.797ofSP:2.797societySP:2.797andSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797classes.SP:4.526Thus,SP:2.916itSP:2.797allowedSP:2.797forSP:2.797theSP:2.797inventionSP:2.797ofSP:2.797poverty.SP:4.526IRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 thinkSP:3.039thatSP:3.039theSP:3.039punchSP:3.039lineSP:3.039ofSP:3.039theSP:3.039primate-H__ humanSP:3.039differenceSP:3.039isSP:3.039thatSP:3.039whenSP:3.039humansSP:3.039inventedSP:3.039poverty,RH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 theySP:2.266cameSP:2.266upSP:2.266withSP:2.266aSP:2.266waySP:2.266ofSP:2.266subjugatingSP:2.266theSP:2.266low-H__ rankingSP:2.266likeSP:2.266nothingSP:2.266everSP:2.266seenSP:2.266beforeSP:2.266inSP:2.266theSP:2.266primateRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 world.PF:447.560 RH:0.000L____V

normalization 4, sample-4

\parindent = 0pt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

LS:10.000LH:0.000IN:0.000AgricultureSP:3.401isSP:3.401aSP:3.401fairlySP:3.401recentSP:3.401humanSP:3.401invention,SP:3.672andSP:3.401inSP:3.401manySP:3.401waysSP:3.401itSP:3.401wasSP:3.401oneSP:3.401ofSP:3.401theSP:3.401greatSP:3.401stu-RH:0.000L__BS:4.625

LS:10.000LH:0.000pidSP:3.204movesSP:3.204ofSP:3.204allSP:3.204time.SP:5.748Hunter-H__ gatherersSP:3.204haveSP:3.204thousandsSP:3.204ofSP:3.204wildSP:3.204sourcesSP:3.204ofSP:3.204foodSP:3.204toSP:3.204subsistSP:3.204on.RH:0.000RS:30.000L__BS:4.625

LS:10.000LH:0.000AgricultureSP:2.162changedSP:2.162thatSP:2.162all,SP:2.194generatingSP:2.162anSP:2.162overwhelmingSP:2.162relianceSP:2.162onSP:2.162aSP:2.162fewSP:2.162dozenSP:2.162domesticatedRH:0.000RS:30.000L__BS:4.625

LS:10.000LH:20.000 foodSP:3.467sources,SP:3.753makingSP:3.467youSP:3.467extremelySP:3.467vulnerableSP:3.467toSP:3.467theSP:3.467nextSP:3.467famine,SP:3.753theSP:3.467nextSP:3.467locustSP:3.467infes-RH:0.000L__BS:4.625

LS:10.000LH:20.000 tation,SP:3.054theSP:2.907nextSP:2.907potatoSP:2.907blight.SP:4.857AgricultureSP:2.907allowedSP:2.907forSP:2.907stockpilingSP:2.907ofSP:2.907surplusSP:2.907resourcesSP:2.907andRH:0.000RS:30.000L__BS:4.625

LS:10.000LH:20.000 thus,SP:2.157inevitably,SP:2.157theSP:2.116unequalSP:2.116stockpilingSP:2.116ofSP:2.116themSP:2.116—SP:2.116stratificationSP:2.116ofSP:2.116societySP:2.116andSP:2.116theSP:2.116inventionRH:0.000RS:30.000L__BS:4.625

LS:10.000LH:20.000 ofSP:3.175classes.SP:5.661Thus,SP:3.389itSP:3.175allowedSP:3.175forSP:3.175theSP:3.175inventionSP:3.175ofSP:3.175poverty.SP:5.661ISP:3.174thinkSP:3.175thatSP:3.175theSP:3.175punchSP:3.175lineSP:3.175ofSP:3.175theRH:0.000RS:30.000L__BS:4.625

LS:10.000LH:20.000 primate-H__ humanSP:2.439differenceSP:2.439isSP:2.439thatSP:2.439whenSP:2.439humansSP:2.439inventedSP:2.439poverty,SP:2.469theySP:2.439cameSP:2.439upSP:2.439withSP:2.439aSP:2.439wayRH:0.000RS:30.000L__BS:4.625

LS:10.000LH:20.000 ofSP:2.319subjugatingSP:2.319theSP:2.319low-H__ rankingSP:2.319likeSP:2.319nothingSP:2.319everSP:2.319seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:45.579 RH:0.000L____V

Theprevious examples differ from theprevious set in that they push these hang related gluenodes before
the left and after the right skip. As I couldn’t make up my mind yet, I let LuaMetaTEX just provide both
variants.

The option to keep hang related information explicitly in the line has some consequences. First of all, we
nowhaveglueandnot someshift/widthcombination. Second,wehave introducedan incompatibility: the
lines now always have the proper width. You might have noticed that but we can show it more explicitly.
We use two parameter sets

normalization 0, sample-5

\hangindent = 20pt
\hangafter = 0

41 Normalization

AgricultureSP:3.881isSP:3.881aSP:3.881fairlySP:3.881recentSP:3.881humanSP:3.881invention,SP:4.271andSP:3.881inSP:3.881manySP:3.881waysSP:3.881itSP:3.881wasSP:3.881oneSP:3.881ofSP:3.881theSP:3.881greatSP:3.881stupidRS:0.000L__BS:4.625

movesSP:3.666ofSP:3.666allSP:3.666time.SP:7.135Hunter-H__ gatherersSP:3.666haveSP:3.666thousandsSP:3.666ofSP:3.666wildSP:3.666sourcesSP:3.666ofSP:3.666foodSP:3.666toSP:3.666subsistSP:3.666on.SP:7.135Agri-L__BS:4.625

cultureSP:3.433changedSP:3.433thatSP:3.433all,SP:3.712generatingSP:3.433anSP:3.433overwhelmingSP:3.433relianceSP:3.433onSP:3.433aSP:3.433fewSP:3.433dozenSP:3.433domesticatedSP:3.433foodRS:0.000L__BS:4.625

sources,SP:3.228makingSP:3.046youSP:3.046extremelySP:3.046vulnerableSP:3.046toSP:3.046theSP:3.046nextSP:3.046famine,SP:3.228theSP:3.046nextSP:3.046locustSP:3.046infestation,SP:3.228theSP:3.046nextRS:0.000L__BS:4.625

potatoSP:2.822blight.SP:4.603AgricultureSP:2.822allowedSP:2.822forSP:2.822stockpilingSP:2.822ofSP:2.822surplusSP:2.822resourcesSP:2.822andSP:2.822thus,SP:2.948inevitably,SP:2.948theSP:2.822un-L__BS:4.625

equalSP:2.370stockpilingSP:2.370ofSP:2.370themSP:2.370—SP:2.370stratificationSP:2.370ofSP:2.370societySP:2.370andSP:2.370theSP:2.370inventionSP:2.370ofSP:2.370classes.SP:3.246Thus,SP:2.383itSP:2.370allowedSP:2.370forRS:0.000L__BS:4.625

theSP:2.995inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isSP:2.995thatSP:2.995whenRS:0.000L__BS:4.625

humansSP:2.327inventedSP:2.327poverty,SP:2.329theySP:2.327cameSP:2.327upSP:2.327withSP:2.327aSP:2.327waySP:2.327ofSP:2.327subjugatingSP:2.327theSP:2.327low-H__ rankingSP:2.327likeSP:2.327nothingSP:2.327everRS:0.000L__BS:4.625

seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:318.691L____V

normalization 4, sample-5

\hangindent = 20pt
\hangafter = 0

LS:0.000LH:20.000 IN:0.000AgricultureSP:3.881isSP:3.881aSP:3.881fairlySP:3.881recentSP:3.881humanSP:3.881invention,SP:4.271andSP:3.881inSP:3.881manySP:3.881waysSP:3.881itSP:3.881wasSP:3.881oneSP:3.881ofSP:3.881theSP:3.881greatSP:3.881stupidRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 movesSP:3.666ofSP:3.666allSP:3.666time.SP:7.135Hunter-H__ gatherersSP:3.666haveSP:3.666thousandsSP:3.666ofSP:3.666wildSP:3.666sourcesSP:3.666ofSP:3.666foodSP:3.666toSP:3.666subsistSP:3.666on.SP:7.135Agri-RH:0.000L__BS:4.625

LS:0.000LH:20.000 cultureSP:3.433changedSP:3.433thatSP:3.433all,SP:3.712generatingSP:3.433anSP:3.433overwhelmingSP:3.433relianceSP:3.433onSP:3.433aSP:3.433fewSP:3.433dozenSP:3.433domesticatedSP:3.433foodRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 sources,SP:3.228makingSP:3.046youSP:3.046extremelySP:3.046vulnerableSP:3.046toSP:3.046theSP:3.046nextSP:3.046famine,SP:3.228theSP:3.046nextSP:3.046locustSP:3.046infestation,SP:3.228theSP:3.046nextRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 potatoSP:2.822blight.SP:4.603AgricultureSP:2.822allowedSP:2.822forSP:2.822stockpilingSP:2.822ofSP:2.822surplusSP:2.822resourcesSP:2.822andSP:2.822thus,SP:2.948inevitably,SP:2.948theSP:2.822un-RH:0.000L__BS:4.625

LS:0.000LH:20.000 equalSP:2.370stockpilingSP:2.370ofSP:2.370themSP:2.370—SP:2.370stratificationSP:2.370ofSP:2.370societySP:2.370andSP:2.370theSP:2.370inventionSP:2.370ofSP:2.370classes.SP:3.246Thus,SP:2.383itSP:2.370allowedSP:2.370forRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 theSP:2.995inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isSP:2.995thatSP:2.995whenRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 humansSP:2.327inventedSP:2.327poverty,SP:2.329theySP:2.327cameSP:2.327upSP:2.327withSP:2.327aSP:2.327waySP:2.327ofSP:2.327subjugatingSP:2.327theSP:2.327low-H__ rankingSP:2.327likeSP:2.327nothingSP:2.327everRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:20.000 seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:318.691 RH:0.000L____V

normalization 0, sample-6

\hangindent =-20pt
\hangafter = 0

AgricultureSP:3.881isSP:3.881aSP:3.881fairlySP:3.881recentSP:3.881humanSP:3.881invention,SP:4.271andSP:3.881inSP:3.881manySP:3.881waysSP:3.881itSP:3.881wasSP:3.881oneSP:3.881ofSP:3.881theSP:3.881greatSP:3.881stupidRS:0.000L__BS:4.625

movesSP:3.666ofSP:3.666allSP:3.666time.SP:7.135Hunter-H__ gatherersSP:3.666haveSP:3.666thousandsSP:3.666ofSP:3.666wildSP:3.666sourcesSP:3.666ofSP:3.666foodSP:3.666toSP:3.666subsistSP:3.666on.SP:7.135Agri-L__BS:4.625

cultureSP:3.433changedSP:3.433thatSP:3.433all,SP:3.712generatingSP:3.433anSP:3.433overwhelmingSP:3.433relianceSP:3.433onSP:3.433aSP:3.433fewSP:3.433dozenSP:3.433domesticatedSP:3.433foodRS:0.000L__BS:4.625

sources,SP:3.228makingSP:3.046youSP:3.046extremelySP:3.046vulnerableSP:3.046toSP:3.046theSP:3.046nextSP:3.046famine,SP:3.228theSP:3.046nextSP:3.046locustSP:3.046infestation,SP:3.228theSP:3.046nextRS:0.000L__BS:4.625

potatoSP:2.822blight.SP:4.603AgricultureSP:2.822allowedSP:2.822forSP:2.822stockpilingSP:2.822ofSP:2.822surplusSP:2.822resourcesSP:2.822andSP:2.822thus,SP:2.948inevitably,SP:2.948theSP:2.822un-L__BS:4.625

equalSP:2.370stockpilingSP:2.370ofSP:2.370themSP:2.370—SP:2.370stratificationSP:2.370ofSP:2.370societySP:2.370andSP:2.370theSP:2.370inventionSP:2.370ofSP:2.370classes.SP:3.246Thus,SP:2.383itSP:2.370allowedSP:2.370forRS:0.000L__BS:4.625

theSP:2.995inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isSP:2.995thatSP:2.995whenRS:0.000L__BS:4.625

humansSP:2.327inventedSP:2.327poverty,SP:2.329theySP:2.327cameSP:2.327upSP:2.327withSP:2.327aSP:2.327waySP:2.327ofSP:2.327subjugatingSP:2.327theSP:2.327low-H__ rankingSP:2.327likeSP:2.327nothingSP:2.327everRS:0.000L__BS:4.625

seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:318.691L____V

normalization 4, sample-6

\hangindent =-20pt
\hangafter = 0

Normalization 42

LS:0.000LH:0.000IN:0.000AgricultureSP:3.881isSP:3.881aSP:3.881fairlySP:3.881recentSP:3.881humanSP:3.881invention,SP:4.271andSP:3.881inSP:3.881manySP:3.881waysSP:3.881itSP:3.881wasSP:3.881oneSP:3.881ofSP:3.881theSP:3.881greatSP:3.881stupidRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000movesSP:3.666ofSP:3.666allSP:3.666time.SP:7.135Hunter-H__ gatherersSP:3.666haveSP:3.666thousandsSP:3.666ofSP:3.666wildSP:3.666sourcesSP:3.666ofSP:3.666foodSP:3.666toSP:3.666subsistSP:3.666on.SP:7.135Agri-RH:0.000L__BS:4.625

LS:0.000LH:0.000cultureSP:3.433changedSP:3.433thatSP:3.433all,SP:3.712generatingSP:3.433anSP:3.433overwhelmingSP:3.433relianceSP:3.433onSP:3.433aSP:3.433fewSP:3.433dozenSP:3.433domesticatedSP:3.433foodRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000sources,SP:3.228makingSP:3.046youSP:3.046extremelySP:3.046vulnerableSP:3.046toSP:3.046theSP:3.046nextSP:3.046famine,SP:3.228theSP:3.046nextSP:3.046locustSP:3.046infestation,SP:3.228theSP:3.046nextRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000potatoSP:2.822blight.SP:4.603AgricultureSP:2.822allowedSP:2.822forSP:2.822stockpilingSP:2.822ofSP:2.822surplusSP:2.822resourcesSP:2.822andSP:2.822thus,SP:2.948inevitably,SP:2.948theSP:2.822un-RH:0.000L__BS:4.625

LS:0.000LH:0.000equalSP:2.370stockpilingSP:2.370ofSP:2.370themSP:2.370—SP:2.370stratificationSP:2.370ofSP:2.370societySP:2.370andSP:2.370theSP:2.370inventionSP:2.370ofSP:2.370classes.SP:3.246Thus,SP:2.383itSP:2.370allowedSP:2.370forRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000theSP:2.995inventionSP:2.995ofSP:2.995poverty.SP:5.119ISP:2.994thinkSP:2.995thatSP:2.995theSP:2.995punchSP:2.995lineSP:2.995ofSP:2.995theSP:2.995primate-H__ humanSP:2.995differenceSP:2.995isSP:2.995thatSP:2.995whenRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000humansSP:2.327inventedSP:2.327poverty,SP:2.329theySP:2.327cameSP:2.327upSP:2.327withSP:2.327aSP:2.327waySP:2.327ofSP:2.327subjugatingSP:2.327theSP:2.327low-H__ rankingSP:2.327likeSP:2.327nothingSP:2.327everRH:0.000RS:0.000L__BS:4.625

LS:0.000LH:0.000seenSP:2.319beforeSP:2.319inSP:2.319theSP:2.319primateSP:2.319world.PF:318.691 RH:0.000L____V

A not yet mention part of the normalization is that, because they are no longer of relevance, the special
local par nodes have been removed. The one that starts a paragraph is turned into a normal directional
node if needed, so that we get properly balanced pairs of directional nodes. It must been said that the
code that does all this is a bit of amess. Wewant to stay close to the original code, but we also need to deal
with all these extensions, like directions, protrusion, extra boxes, etc.

Not shown here is that there is a fifth mode of operation. When we enable that level an overfull box will
get a correction skip so that the right skip etc are properly aligned. How useful this is: we’ll see.

Now, when I decide to keep this feature, which can be set at the Lua end to do the previously mentioned
tasks, depending on a feature level ranging from zero to four, I also need to check the impact on existing
ConTEXt code, which (currently) is complicated by the fact that most is shared between MkIV and lmtx,
and only LuaMetaTEXhas this normalization feature. I will probably enable it for awhile locally in order to
see if there are side effects. Then, when the codebase gets adapted, wehave to assume that normalization
happens, so there is no way back.

43 Normalization

Expansion 44

6 Expansion

Character expansion was introduced in pdfTEX a couple of decades ago. It is a mechanism that scales
glyphshorizontally in order to reduce excessivewhitespace that is needed toproperly justify aparagraph.
I must admit that I never use it myself but there are users who do. Although this mechanism evolved a
bit, and in LuaTEX is implemented a bit different, the basics remained the same. If you have no clue what
this is about, you can just quite reading here.

A font can be set up to expand characters by a certain amount: they can shrink or stretch. This is driven
by three parameters: step, stretch and shrink. The values are in thousands because TEX has no float
quantity. Originally these values were percentages of the width of a glyph, later they became related to
the emwidth but in LuaTEX we went back to the former definition.

In ConTEXt MkIV we have an interface that works as follows:

\startluacode
local classes = fonts.expansions.classes

classes.qualitya = {
vector = "default",
factor = 1,
stretch = 4,
shrink = 2,
step = .5,

}

classes.qualityb = {
vector = "default",
factor = 1,
stretch = 8,
shrink = 4,
step = .5,

}

\stopluacode

The default vector looks like this:

vectors['default'] = {
[0x0041] = 0.5, -- A
[0x0042] = 0.7, -- B
-- and some more

}

The values that we pass to the engine are stretch 40, shrink 20, and step 5 for qualitya and stretch 80,
shrink 40, and step 5 for qualityb, so we multiply by 10. In the engine the step is limited to 100, the
stretch to 1000 and the shrink to 500. But these extremes produce quite bad results.

The expansion class is set with the expansion feature, as in:

\definefontfeature [basea] [default] [expansion=qualitya]
\definefontfeature [baseb] [default] [expansion=qualityb]

45 Expansion

\definefont [FontA] [Serif*basea]
\definefont [FontB] [Serif*baseb]

In figure 6.1 we see this in action, using the following code:

\setupalign[verytolerant,stretch,hz] % hz triggers expansion
\dorecurse {30} {%

{\FontB \darkred test me #1,} \FontA \dorecurse{#1}{test ##1, }%
}\par

test me 1, test 1, test me 2, test 1, test 2, test me 3, test 1, test 2, test 3, test me 4, test 1, test 2, test 3, test 4,
test me 5, test 1, test 2, test 3, test 4, test 5, test me 6, test 1, test 2, test 3, test 4, test 5, test 6, test me 7, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test me 8, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test me 9, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test me 10, test 1, test 2, test 3, test 4,
test 5, test 6, test 7, test 8, test 9, test 10, test me 11, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test 9, test 10, test 11, test me 12, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test me 13, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test me 14, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13,
test 14, test me 15, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test me 16, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test 13, test 14, test 15, test 16, test me 17, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test
9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test me 18, test 1, test 2, test 3, test 4, test
5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test me
19, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test
15, test 16, test 17, test 18, test 19, test me 20, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test me 21, test 1, test
2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test
17, test 18, test 19, test 20, test 21, test me 22, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test
me 23, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test me 24, test 1, test 2, test 3, test 4,
test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test
19, test 20, test 21, test 22, test 23, test 24, test me 25, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test 24, test 25, test me 26, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test
11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24,
test 25, test 26, test me 27, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test
12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test me 28, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test
12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test 28, test me 29, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test
11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24,
test 25, test 26, test 27, test 28, test 29, test me 30, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test
9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test
23, test 24, test 25, test 26, test 27, test 28, test 29, test 30,

Figure 6.1

There is one drawback with this method, although so far I never heard a user complain, which can be an
indication of how thismechanism isused: you cannotmix fontswithdifferent step, stretch and/or shrink.
As we just did this in the example, this statement is not really true in LuaMetaTEX: there we only need to
keep the step the same. This is compatible in the sense that otherwise we would quit the run, so at least

Expansion 46

we carry on: the smallest stretch and shrink is taken. But, we do issue a warning (once) because there
can be side effects! This is not that pretty a solution anyway because it depends onwhat font is used first.

It is for this reason that we have another option: in ConTEXt lmtx you can define a specific expansion:

\defineexpansion
[myexpansion]
[step=1, % default
stretch=50,
shrink=20]

There is no need to have a different step than 1. In pdfTEX instances are created per step used, but in
LuaTEX this is more fluid. There is no gain in using different steps. We just keep it for compatibility
reasons. This specific expansion is enables with:

\setexpansion[myexpansion]

and the result is shown in figure 6.2. This time the set expansion wins over the one set in the font. All
fonts that have the expansion feature set are treated the same. By using thismethod you can locally have
different values.

Deep down we use some new primitives:

\adjustspacingstep
\adjustspacingstretch
\adjustspacingshrink

The step is limited to 100 (10%) and the stretch and shrink to 500 (50%) and the stretch to 1000 (100%)
but these extremes are only useful for examples.

47 Expansion

test me 1, test 1, test me 2, test 1, test 2, test me 3, test 1, test 2, test 3, test me 4, test 1, test 2, test 3, test 4,
test me 5, test 1, test 2, test 3, test 4, test 5, test me 6, test 1, test 2, test 3, test 4, test 5, test 6, test me 7, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test me 8, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test
8, test me 9, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test me 10, test 1, test 2, test 3, test
4, test 5, test 6, test 7, test 8, test 9, test 10, test me 11, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test 9, test 10, test 11, test me 12, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test me 13, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test me 14, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13,
test 14, test me 15, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test me 16, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10,
test 11, test 12, test 13, test 14, test 15, test 16, test me 17, test 1, test 2, test 3, test 4, test 5, test 6, test
7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test me 18, test 1, test 2, test
3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test
18, test me 19, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test 16, test 17, test 18, test 19, test me 20, test 1, test 2, test 3, test 4, test 5, test 6,
test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test
20, test me 21, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test me 22, test 1, test 2, test 3, test
4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test
18, test 19, test 20, test 21, test 22, test me 23, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test me 24, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test me
25, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test me 26, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15,
test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test me 27, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15,
test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test 27, test me
28, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test 27,
test 28, test me 29, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test 28, test 29, test me 30, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test 24, test 25, test 26, test 27, test 28, test 29, test 30,

Figure 6.2

Macros 48

7 Macros

In a rather large macro package like ConTEXt a user can’t know all the commands. Even I often only use
a handful of them. One danger luring is that commands can get redefined and that deep down such a
command is used and that the new definition is not doing the expected.

A command like \framed can have companions, like \setupframed. These for the user visible com-
mands are implemented using commands with less nice names, often in some namespace, using under-
scores and therefore also much longer. There is not that much change that a user spoils those. When a
user uses \defineframed, a new command gets defined and when doing that a user should know what
has already been defined.

In addition to these commands, we also have entities like character definitions and math symbols, as
well as a while lot of registers (counters, dimensions etc.), and let’s not forget primitives: the build in
commands.

We can go paranoid and try to protect all these commands from redefinitions, but one of the prominent
properties of TEX is that you can redefine commands. It thereforemakes no sense to prohibit this. Also, in
practice there are seldomproblems, at least I haven’t heard of them. In fact, toomuch protection can also
bite us because sometimes redefinition is handy or even needed. Take for instance the \NC command
used in tables: it adapts itself to the circumstances.

At the engine level there is not that much that we can (currently) do. In LuaMetaTEX we can define frozen
macros. The question is: will we use that feature?

\frozen\def\foo{foo}

After this definition, one cannot easily redefine \foo. It is however possible (unless these primitives are
redefined) to do this:

\unletfrozen\foo

andmake \foo available again. It’s companion is:

\letfrozen\foo

Becausemessingwith frozenmacros can issue an errormessage, we cannot demonstrate it on paper. But
we can show a few companion primitives because just to be complete, one can also unprotect and protect
existing macros:

\def\crap{crap} \edef\morecrap{\crap} \meaning\morecrap
\letprotected\crap \edef\morecrap{\crap} \meaning\morecrap

\unletprotected\crap \edef\morecrap{\crap} \meaning\morecrap

Protection prevents expansion of macros in some cases. One can define a macro by using the prefix
\protected although in ConTEXt this doesn’t work as expected. The protectedwas already taken when
this primitive shows up, so we use \unexpanded or \normalprotected instead. And yes, that one also
clashes with a primitive that showed up later, but as it’s not used often, the longer \normalunexpanded
will do.

macro:->crap
macro:->\crap

49 Macros

macro:->crap

Back to freezing commands: the question is, will and if so, how will we use this in ConTEXt? This is one of
the decisions we have to make in 2020.

Libraries 50

8 Libraries

8.1 Introduction

The LuaMetaTEX binary comes with a couple of libraries built in. These normally provide enough func-
tionality to get a TEX job done. But take the case where need to manipulate (or convert) an image before
we can include it? It would be nice if ConTEXt does that for you so having some features in the binary that
handle it make sense. However, given that such a conversion only happens once it makes more sense to
just call an external program and let that deal with it. It is for that reason that the ConTEXt code base has
hardly any library related code: most of what one wants to do can be done by calling a program. Some
callers are built in, others can be dealt with using the Adityas filtermodule. Themost significant runtime
exception is probably accessing sql databaseswhere itmight bemore efficient to use a library call instead
of calling a client. And even then themain reason for that interface being present is the simple fact that I
(ab)use the engine to serve requests that need some kind of database access. Another example of where
we need some external program is in generating barcodes. Here one can argue that it doesmake sense to
do that runtime, for instance because they change or because one doesn’t like to have dozens of cached
barcode images on disk.

In this chapter I will explain how we deal with libraries in LuaMetaTEX. Because libraries create a depen-
dency an approach is chosen that tries to avoid bloating the source treewith additional header and source
files. This is made easy by the fact that we don’t need full blown interfaces to libraries where all methods
are exposed. We know what we need and most of these tasks somehow relate to typesetting which is a
limited application with known demands in terms of input, output and performance. We don’t need to
serve every possible scenario.

8.2 Using LUA libraries

Oneapproach is touse aLua library that sits between the embeddedLua instance and the external library.
Say that one does this:

local mylib = require("mylib")

This can locate and load the file mylib.luawhich implements a bunch of (Lua) functions. But, it can also
load a library, for instance mylib.dll, a binary that provides functions that themselves can call external
ones. Often such a library is also responsible for some resourcemanagementwhich is thendone via user-
data objects. Such a connector library on the one hand refers to Lua library methods (like const char
* str = lua_tostring (L, 1); for fetching a Lua string variable from the argument list) and on the
other hand to those in the external library (like passing that stringstr to a function andpassing the result
back to Lua with lua_pushstring (L, result);). If we would follow that approach in LuaMetaTEX it
means that in addition to themain binary (onMSWindows that isluametatex.exe) there is also an extra
intermediate binary (on MS Windows that is mylib.dll) plus the external library (on MS Windows that
could be foolib.dll) which itself can depend on other libraries.

In this approach we need to compile the extra intermediate libraries alongside the main LuaMetaTEX
binary. Quite likely we then need access to the header files of the external libraries too. We might even
decide to put the dependencies in our source tree. But, this is not what we like to do: it adds extra work,
we need to keep an eye on updates and operating specific patches, we complicate the compilation, etc.
This all contradicts the fact that we want LuaMetaTEX to be simple. There is no need to complicate the
setup just because a very few users want to use some library. Add to this the fact that quite likely we need

51 Libraries

to provide a version of LuaMetaTEX that exposes its Lua related symbols whichmakes for a larger binary.
So, this approach is not really an option because at the same timewe like to keep the binary (andmemory
footprint) as small as possible (think of running in a container or on a low energy device).

8.3 A variant

There are a few issues when you use Lua libraries from elsewhere. First of all, you need to get hold of one
thatmatches the version of Lua that you use. There are not thatmany and some only can be set up as part
of a larger framework. Also, you canfindplenty ofmodules that seemnot to bemaintained (ormaybe they
are just very stable and I’m wrong here). Also, not all platforms are supported equally well. Then there is
the question to what extend libraries are to stay. What is considered to be the standard today might not
be tomorrow. Even in the rather stable TEX ecosystem we see them come and go. These are all reasons
to avoid hard coded dependencies. Ideally we like users to be able to compile LuaMetaTEX in the future
without too must hassle.

A couple of years after we started the LuaTEX project, a solution for using libraries was implemented,
called SwigLib, because it uses the swig infrastructure. It was an attempt to come up with a more or less
standard approach, a rather one-to-one mapping so that basically any library could be interfaced. But,
probably because no one really needs libraries, it never catched on. In MkIV we still support loading
libraries made that way but in lmtx that code has been removed.

As a side note: the code that deals with this in MkIV also deals with version specific loading. When we
were playing with for instance MySQL libs we found out that it made sense to be able to support different
apis, but in the end, given the rare usage of libraries, thatmadeno sense either. Therefore in lmtx locating
libraries has version support removes and as a consequence is much simpler (code-wise).

8.4 Foreign function interfaces

Then there is a ffi interface, first introduced in LuajitTEX as it is part of LuaJIT, and later a similar library
was built-in LuaTEX. But LuaJIT doesn’t conceptually follow Lua upgrades and its future is unsure so in
LuaMetaTEX there is no jit variant (the jit partwas never used anyway as it only sloweddowna run; we just
used the ffi part plus the fact that the restricted virtual machine performs better). The ffi library used in
LuaTEX also comes from elsewhere and it doesn’t seem to be maintained any longer, so that code is to be
keptworking in theperspective of LuaTEX.Both technologieshook into theprocessor architecture andare
somewhat complex so when their maintenance becomes unsure we have to reconsider using them. Not
all hardware platforms are supported4 and the functionality can differ in details per platform. To some
extendwe can keep using ffi in LuaTEX because Luigi takes care of it, but who knowswhen it becomes too
problematic. Does it make sense to adopt a library that needs tweaks depending on architectures? For
now we’re good for LuaTEX, so for a while we’re also okay (in MkIV).

The nice thing about ffi is that one can define the interface at runtime. Of course this interface has to fit
the current version of the library api, but that is doable. It is up to a user of a library to determinewhere it
comes from. It canbeput in theTEX tree but also being taken fromwherever the operating systemput it in
the path. Of course that can then be a bit of an issue when there are different versions because programs
can ship their own variants, but when you use a library you probably are aware of that and know what
you’re doing. A drawback of ffi is that it opens up the whole machinery pretty low level, which can be
considered a risk. Some can consider that to be a security threat. It for these reasons that LuaMetaTEX
doesn’t provide the ffi feature; users who depend on it can of course use MkIV with LuaTEX.

4 As Iwrite this only IntelworkswhileARMdoesn’t andonly onMSWindows, linux andos-x I can compilewithout alignmentwarnings

Libraries 52

8.5 So how to proceed?

When a library and its Lua interface are kept external the main binary has to be compiled in a way that
permits loading libraries (read: symbols need to be known). When we use ffi that is not needed. And
when a library is internal we have the disadvantage that wementioned at the start of this chapter.

So, how do we combine the advantages of ffi (runtime binding), external libraries (no need to have all
that code in the code base) and internal libraries (no loading issues)? At some point it stroke me that
we actually can do that with not that much effort. The solution was probably subconsciously implanted
by noticing the fact that the LuaMetaTEX machinery uses function pointers in some places and the fact
that when a Lua library is loaded by Lua itself, a specific initialization function is called to initialize it: by
combining these concepts we can delay the binding till when a library is needed.

In LuaMetaTEXwe can therefore have some optional libraries that offer aminimal interface because after
all we can do a lot at the Lua end. Optional libraries register themselves in the global optional table.
We’re talking of a couple of hundred lines of C for a simple binding. The functions in an optional library
table can be used (accessed) without loading the library and then just do nothing useful. So, before using
them you need to load the third party library but we can safely assume that the Luawrapper code calls an
initializerwhen itneeds some feature. That initializer,whichby theway is locatedat theLuaend, loads the
external library, andwhen that is successful theneededhelpers are boundby resolving functionpointers.
There is no dependencywhen nothing is used: themain binary stays lean andmean because the binding
normally only adds a few KB. Users can compile without dependencies and when used performance is
quite okay (no ffi overhead).

The LuaMetaTEX distribution only ships a few such bindings but these can serve as example. What is
shipped has a proper Lua companion file and these are then the standard one used in the ConTEXt dis-
tribution. Think of MySQL and SQLite (for databases), zint (for barcodes), simple Curl (for fetching stuff),
Ghostscript and GraphicsMagick (for some conversions) bindings . When compiled into LuaMetaTEX
these will add some interfacing code to the main binary but that gets compensated by the removal of
the ffi library. The Lua interfaces provide just enough to get us going. At some point we can consider
providing libraries as optional part of an installation because we can generate them using the buildbot
infrastructure managed by Mojca, but the core distribution (source code) is kept clean.

53 Libraries

Is LuaMetaTEX still TEX? 54

9 Is LUAMETATEX still TEX?

9.1 Introduction

Is LuaMetaTEX really a TEX (compatible) engine? The answer to that depends onhowyoudefineTEX. If you
think of the program with the same name, the answer is definitely “no”, simply because a program that
is not exactly behaving like “TEX The Program” cannot be called TEX. This is why derived programs have
tex in their namebut also some addition that indicates that it isn’t the original: e, pdf, lua. Don’t confuse
that withmacro package names that have tex in their name. If you find such binaries that they are likely
some stub to an engine (binary) that preloads a format file (a memory dump) with the same name.

When youmean “TEX TheMacro Language” the answer is a bitmore nuanced especially when the results
are pretty close to identical. In the next sections I will discuss this in more detail from the perspective of
how ConTEXt evolved and what engines it has used.

9.2 Multiple engines

Whenwe startedwith ConTEXt therewas not thatmuch choice in engines. Basically one just used original
TEX, but although we used the version that came with the book, pretty soon we switched to emTEX, a ver-
sion that gave more memory; later a real huge version showed up. The fonts used were bitmaps and the
viewer was a dvi bitmap viewer. However, when our new printer could not be set up properly we decided
to move on to PostScript fonts. That also meant using a different backend driver (dvipsone). And then of
course we also started using a previewer that could handle outline fonts. Once you start along that route
graphics come into play, color shows up and hyperlinks become an option. A couple of years later the
pdf document rendering format was introduced. This paragraph alreadymentions a lot of different pro-
grams and adaptations, but we’re still talking good old TEXhere and ConTEXtwas set up in such away that
it adapted itself to whatever ecosystemmade sense. When looking at TEX one has to consider the front as
well as the backend, and both have related primitives and features. Extensions to the frontend have been
driven by the demands of macro packages (beyond the original ideas) and those of the backend relate to
what the evolving rendering demands impose.

A couple of decades ago the 𝜀-TEX project started. It’s objective was to extend stable TEX with a couple of
more primitives and features: it is a superset and therefore still TEX, but as it really is an extension the
name was extended too (with the bit unusual character 𝜀). At that point themain reason for ConTEXt was
convenience because the new features were already kind of present in the code base (think of emulated
behavior). Again the macro package adapted itself at runtime.

Then pdfTEX came around which had some impact. It introduced the concept of a built-in backend that
avoided additional programs. The 𝜀-TEX extensions were merged into this program so that basically
meant that it replaced its predecessors. For a user pdfTEX was just TEX. For some reason the narrative
became that ConTEXt depended on pdfTEX, probably because it was always quick in using its features, a
side effect of being close to the development.

The ConTEXt package was an early adopter of MetaPost and that graphic subsystem, although still exter-
nal, was integrated in such a way that users could think of it being embedded. This wasmade possible by
the fact that right from the start ConTEXt came with an infrastructure that handled processing including
subruns as needed forMetaPost. This iswhy, years later, adding aMetaPost library to LuaTEXwas a logical
step. As ConTEXt camewith a lot of scripts (for all kind of tasks related to typesetting andmanaging a TEX
ecosystem) adding a scripting language (like Lua) was not that strange either.

55 Is LuaMetaTEX still TEX?

In parallel to pdfTEX the experimental Omega programwas on itsway and although at somepoint a stable
Aleph variant was there, it never was robust enough for production. Itsmain contribution (that survived)
was the introduction if directional typesetting. There were ConTEXt users using it but for very specific
applications. It’s alsowhy thebidirectionalmodel ofOmega inspiredLuaTEXmore than thesimplermodel
that 𝜀-TEX used.

9.3 Themerge

We nowmove forward to LuaTEX and more precisely LuaMetaTEX because that is for ConTEXt the engine
of choice now. To what extend is it TEX or not? The naive answer is “no” because some primitives are not
present and/or are implemented using Lua. However, these primitives fall into categories. Some relate
to the backend and in LuaMetaTEX the backend is not built-in and as a consequence a macro package
has to provide the primitives as part of its implementation of a backend. This is no big deal because the
backend related primitives in TEX The Program are actually examples of extensions and implemented as
such. Handling them happens in kind of isolated code. Take \special: it is basically a no-op when the
dvi driver doesn’t interpret what is passed to the dvi file.5 6

Amore drastic change is the lack of font loaders and that no fonts can be stored in the format. Again this
relates to the simple fact that todays fonts are more demanding so we need to extend themachinery and
as we do that via Lua extensions we can as well do all that way. Less drastic, but it could have side effects,
is that the machinery has to be able to deal with OpenType math. And of course all is Unicode aware so
additional primitives cope with that. But in principle the old stuff should still work. Hyphenation is also
expanded: patterns are loaded runtime and the hyphenation, ligature building and kerning stages are
split, which actually it a good thing.

The LuaMetaTEX code base is a follow up on LuaTEX, that combines good old TEX (but adapted with re-
spect to fonts, languages and math as mentioned), parts of 𝜀-TEX (so it provides more primitives), bits
of pdfTEX (like protrusion and expansion, although adapted), and rudiments of Omega (Aleph). And of
course there’s a lot of new stuff too, primitives as well as ways to plug in Lua code plus some helpers at
the Lua end.

As an example of progression, by now the 𝜀-TEX extensions that we kept are integratedmore naturally in
existing subsystems. A nice detail is that there are no longer any version numbers that relate to𝜀-TEX; for
a while they were kept but suddenly I realized that it makes no sense to waste (four) command codes on
something that is of not much use: there has never been a real 𝜀-TEX follow up after its stable release so
testing for a version makes no sense. No backend means no pdfTEX version info too and Omega version
numbers serve no purpose either. If a macro package needs to know what functionality is there, testing
for the LuaTEX version number, revision andmaybe functionality level makes enough sense. By the way,
one reason for a clean up related to 𝜀-TEX was that where 𝜀-TEX uses change files to replace or extend
good old TEX code, LuaTEX has one integrated code base.

9.4 The verdict

So in the end the answer is that LuaMetaTEX is mostly TEX but that due to developments like for instance
Unicode, OpenType fonts andmath, as well as the wish to use images, color, runtime graphics, direction-
ality, features beyondwhat the enginehas built, etc. in the end it hopefullymeets the demands to today. In

5 ConTEXt MkII has a bunch of backend drivers, TEX code, that targets specific postprocessors and they hook into primitives like
\special or the additional \pdf ... ones in pdfTEX.

6 Weneed to keep inmind that by the time pdfTEX and later LuaTEXwere developedmemory constraints were lifted so these engines
didn’t have to work around the limitations that for instance 𝜀-TEX and Omega had to cope with.

Is LuaMetaTEX still TEX? 56

its core the same code is still there although extensions and hooks got mixed in more naturally. When in
documents (or talks) I speak of TEX I basically refer to a concept (materialized in the set of core primitives
and related functionality) but once extensions come into play I try to talk of LuaTEX or LuaMetaTEX. This
happens kind of automatic because I know what got added but I can imagine that users who entered the
game later don’t always see what was added (and when).

57 Is LuaMetaTEX still TEX?

Numbers 58

10 Numbers

A few decades of programming in the TEX language canmake one wish for certain features. It will there-
fore be no surprise that in LuaTEX (and evenmore in LuaMetaTEX) we have some additional functionality.
However, I have to admit that some of these are not used thatmuch in ConTEXtMkIV and lmtx. The reason
is that somewishes date fromMkII times and because we now have Lua we actually don’t need thatmany
new fancy features. Also, it makes no sense to rewrite mechanisms that are already working well. How-
ever, in order to fully exploit the possibilities that Lua gives, there are some additions that relate to the
way this language can communicate with TEX. Of course there’s also the issue of a potentially enhanced
performance, but there is not much to gain in that department.

A side effect of adding features, of which some are just there to complete the picture, or, as mentioned,
because they were supposed to make sense, is that I make examples. Here I show the result of one of
these experiments. I have no clue how useful this is, but I’ve learned not to underestimate users in their
demands and creativity.

Internally, TEX does all in 32 bit integers. When you say:

\scratchcounter 123
\scratchdimen 123pt

the 123 gets assigned to a count register and the 123pt is assigned to a dimen register but actually that is
then also an integer: the internal unit of a dimen is a scaled point (sp) and only when its value is shown to
the user, a real number can show up, followed by the pt unit. The precision is limited, so you can expect
about four decimal positions precision here. There is no concept of a floating point number in TEX, and
the only case where a float gets used is in the final calculations of glue and even that only comes into play
in the backend.

So, although I don’t really have an application for it in ConTEXt (otherwise I’d already added a float data
type to the engine), it sounded like a good idea to see if we could emulate float support. In the following
examples the numbers aremanaged in Lua and therefore they are global. I couldmake a local variant but
why complicate matters. These macros start with \lua to make clear that they are not managed by TEX.

\luacardinal bar 123
\luainteger bar -456
\luafloat bar 123.456E-3

We define bar three times. Each type gets its own hash, so from the perspective of Lua its nature is kept:
integer or double.

\the\luacardinal bar \quad
\the\luainteger bar \quad
\the\luafloat bar

123 -456 0.12345599999999999629718416827017790637910366058349609375

Instead of decimal values, you can also use hexadecimal values (watch the p for exponents):

\luacardinal bar 0x123
\luainteger bar -0x456
\luafloat bar 0x123.456p-3

59 Numbers

So, now we get:

291 -1110 36.40887451171875

From these examples you see twokindof usage: setting a value, andusing it. It is that property thatmakes
them special. Because themacros are implemented using Lua calls it means that at the Lua endwe know
what usage is expected. And it is that dualistic property that I wanted to explore but that in the end only
makes sense it a very few cases, but sometimes those few are important. We could of course twomacros,
a setter and a getter, but using one kind of its in.

The setters accept an optional equal sign, as in:

\luainteger gnu= 123456 \luafloat gnu= 123.456e12
\luainteger gnu = 123456 \luafloat gnu = 123.456e12
\luainteger gnu =123456 \luafloat gnu =123.456e12

Although Lua is involved in picking up the value, storing it someplace, and retrieving it on demand, per-
formance is pretty good. You probably won’t notice the overhead anyway.

The values that \the returns are serialized numbers. However, sometimes you want what TEX sees as a
numeric token, For that we have these variants

\luadimen test 100pt
\scratchdimen = .25 \luadimen test
\the\scratchdimen

Which produces the expected value: 25.0pt, something that depends on the fact that the dimension is
not a serialized. Talking of serialization, there are several ways that Lua can do that so let’s give some
examples. We start with some definitions. Beware, floats and cardinals are stored independently!

\luacardinal x = -123
\luacardinal y = 456

\luafloat x = 123.123
\luafloat y = -456.456

We have a macro \luaexpression (not to be confused with \luaexpr) that takes an optional keyword:

- : \luaexpression {n.x + 2*n.y}
f : \luaexpression float {n.x + 2*n.y}
i : \luaexpression integer {n.x + 2*n.y}
c : \luaexpression cardinal {n.x + 2*n.y}
b : \luaexpression boolean {n.x + 2*n.y}
l : \luaexpression lua {n.x + 2*n.y}

The serialization can be different for these cases:

- : -789.789
f : -789.788999999999987267074175179004669189453125
i : -790
c : 790
b : 1
l : -0x1.8ae4fdf3b645ap+9

Numbers 60

The numbers namespace resolves to a float, integer or cardinal (in that order) and calculations take place
as in Lua. If you only use integers then normally Lua will also serialize them as such.

Here is another teaser. Say that we set the scratchdimen register to a value:

\scratchdimen 123.456pt

We now introduce the \nodimenmacro, that can be used this way:

[\the\scratchdimen] [\the\nodimen\scratchdimen]

[123.456pt] [123.456pt]

which is not that spectacular. Nor is this:

\nodimen\scratchdimen = 654.321pt

But how about this:

\the \nodimen bp \scratchdimen 651.876462bp
\the \nodimen cc \scratchdimen 50.959168cc
\the \nodimen cm \scratchdimen 22.996753cm
\the \nodimen dd \scratchdimen 611.510013dd
\the \nodimen in \scratchdimen 9.05384in
\the \nodimen mm \scratchdimen 229.96753mm
\the \nodimen nc \scratchdimen 51.103896nc
\the \nodimen nd \scratchdimen 613.246746nd
\the \nodimen pt \scratchdimen 654.320999pt
\the \nodimen sp \scratchdimen 42881581sp

So here we have a curious mix of setter and getter. The setting part is not that interesting but we just
provide it as convenience (and demo). Of course we can have 10 specific macros instead. Keep in mind
that this is a low level macro, so it doesn’t use the normal ConTEXt user interface.

A bit more complex are one or two dimensional arrays. Again this is an example implementation where
users can come up with more ideas.

\newarray name integers type integer nx 2 ny 2
\newarray name booleans type boolean nx 2 ny 2
\newarray name floats type float nx 2 ny 2
\newarray name dimensions type dimension nx 4

Here we define three two-dimensional assays and one one-dimensional array. The type determines the
initialization as well as the scanner and serializer. Values can be set as follows:

\arrayvalue integers 1 2 4 \arrayvalue integers 2 1 8
\arrayvalue booleans 1 2 true \arrayvalue booleans 2 1 true
\arrayvalue floats 1 2 12.34 \arrayvalue floats 2 1 34.12
\arrayvalue dimensions 1 12.34pt \arrayvalue dimensions 3 34.12pt

If you want to check an array on the console, you can say:

\showarray integers

We now access some values. Apart from the float these are (sort of) native data types.

61 Numbers

[\the\arrayvalue integers 1 2]
[\the\arrayvalue booleans 1 2]
[\the\arrayvalue floats 1 2]
[\the\arrayvalue dimensions 1]\crlf
[\the\arrayvalue integers 2 1]
[\the\arrayvalue booleans 2 1]
[\the\arrayvalue floats 2 1]
[\the\arrayvalue dimensions 3]

This produces:

[4] [1] [12.339999999999999857891452847979962825775146484375] [12.34pt]
[8] [1] [34.11999999999999744204615126363933086395263671875] [34.12pt]

You can of course use these values in many ways:

\dostepwiserecurse{1}{4}{1}{
[\the\arrayvalue dimensions #1 :
\luaexpression dimen {math.sind(30) * a.dimensions[#1]}]

}

This gives:

[12.34pt: 6.17pt] [0.0pt: 0pt] [34.12pt: 17.06pt] [0.0pt: 0pt]

In addition to the already seen integer and dimension variables fed back into TEX, we also have booleans.
These are just integers with the value zero or one. In order to make their use easier there is a new
\ifboolean primitive that takes such a bit:

slot 1 is \ifboolean\arrayequals dimensions 1 0pt zero \else not zero \fi
slot 2 is \ifboolean\arrayequals dimensions 2 0pt zero \else not zero \fi

We get:

slot 1 is not zero
slot 2 is zero

A variant is a comparisonmacro. Of course we can use the dimen comparison conditional instead:

slot 1: \ifcase\arraycompare dimensions 1 3pt lt \or eq \else gt \fi zero
slot 2: \ifcase\arraycompare dimensions 2 3pt lt \or eq \else gt \fi zero
slot 3: \ifcase\arraycompare dimensions 3 3pt lt \or eq \else gt \fi zero
slot 4: \ifcase\arraycompare dimensions 4 3pt lt \or eq \else gt \fi zero

slot 1: \ifcmpdim\arrayvalue dimensions 1 3pt lt \or eq \else gt \fi zero
slot 2: \ifcmpdim\arrayvalue dimensions 2 3pt lt \or eq \else gt \fi zero
slot 3: \ifcmpdim\arrayvalue dimensions 3 3pt lt \or eq \else gt \fi zero
slot 4: \ifcmpdim\arrayvalue dimensions 4 3pt lt \or eq \else gt \fi zero

We get:

slot 1: gt zero
slot 2: lt zero

Numbers 62

slot 3: gt zero
slot 4: lt zero

slot 1: gt zero
slot 2: lt zero
slot 3: gt zero
slot 4: lt zero

Anyway, the question is: do we need this kind of trickery, and if so, whatmore is needed? But beware: we
do have Lua anyway, so there is no need for a complex user interface at the TEX end just for the sake of it
looking more TEX. The above shows a bit what is possible.

It is too soon to discuss the low level interface because it still evolves. After some initial experiments, I
decided to follow a slightly different route, and often the third implementation starts to look what I like
more.

63 Numbers

Parameters 64

11 Parameters

When TEX reads input it either does something directly, like setting a register, loading a font, turning
a character into a glyph node, packaging a box, or it sort of collects tokens and stores them somehow,
in a macro (definition), in a token register, or someplace temporary to inject them into the input later.
Here we’ll be discussing macros, which have a special token list containing the preamble defining the
arguments and a body doing the real work. For instance when you say:

\def\foo#1#2{#1 + #2 + #1 + #2}

themacro \foo is stored in such away that it knows how to pick up the two arguments andwhen expand-
ing the body, it will inject the collected arguments each time a reference like#1 or #2 is seen. In fact, quite
often, TEX pushes a list of tokens (like an argument) in the input streamand then detours in taking tokens
from that list. Because TEX does all its memorymanagement itself the price of all that copying is not that
high, although during a long and more complex run the individual tokens that make the forward linked
list of tokens get scattered in tokenmemory andmemory access is still the bottleneck in processing.

A somewhat simplified view of how amacro like this gets stored is the following:

hash entry "foo" with property "macro call" =>

match (# property stored)
match (# property stored)
end of match

match reference 1
other character +
match reference 2
other character +
match reference 1
other character +
match reference 2

When amacro gets expanded, the scanner first collects all the passed arguments and then pushes those
(in this case two) token lists on the parameter stack. Keep in mind that due to nesting many kinds of
stacks play a role. When the body gets expanded and a reference is seen, the argument that it refers to
gets injected into the input, so imagine that we have this definition:

\foo#1#2{\ifdim\dimen0=0pt #1\else #2\fi}

and we say:

\foo{yes}{no}

then it’s as if we had typed:

\ifdim\dimen0=0pt yes\else no\fi

So, you’d better not have something in the arguments that messes up the condition parser! From the
perspective of an expansion machine it all makes sense. But it also means that when arguments are not
used, they still get parsed and stored. Imagine using this one:

65 Parameters

\def\foo#1{\iffalse#1\oof#1\oof#1\oof#1\oof#1\fi}

WhenTEX sees that the condition is false it will enter a fast scanningmodewhere it only looks at condition
related tokens, so even if \oof is not defined this will work ok:

\foo{!}

But when we say this:

\foo{\else}

It will bark! This is because each #1 reference will be resolved, so we effectively have

\def\foo#1{\iffalse\else\oof\else\oof\else\oof\else\oof\else\fi}

which is not good. On the other hand, since expansion takes place in quick parsing mode, this will work:

\def\oof{\else}
\foo\oof

which actually is:

\def\foo#1{\iffalse\oof\oof\oof\oof\oof\oof\oof\oof\oof\fi}

So, a reference to an argument effectively is just a replacement. As long as you keep that in mind, and
realize that while TEX is skipping ‘if’ branches nothing gets expanded, you’re okay.

Most userswill associate the # characterwithmacro arguments or preambles in low level alignments, but
since most macro packages provide a higher level set of table macros the latter is less well known. But,
as often with characters in TEX, you can domagic things:

\catcode`?=\catcode`#

\def\foo #1#2?3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\par
\def\foo ?1#2?3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\par
\def\foo ?1?2#3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\par

Here the questionmark also indicates amacro argument. However, when expandedwe see this as result:

macro:#1#2?3->?1?2?3 =>123
macro:?1#2?3->?1?2?3 =>123
macro:?1?2#3->#1#2#3 =>123

The last used argument signal character (officially called amatch character, here we have two that fit that
category, # and ?) is used in the serialization! Now, there is an interesting aspect here. When TEX stores
the preamble, as in our first example:

match (# property stored)
match (# property stored)
end of match

the property is stored, so in the later example we get:

match (# property stored)
match (# property stored)

Parameters 66

match (? property stored)
end of match

But in the macro body the number is stored instead, because we need it as reference to the parameter,
so when that bit gets serialized TEX (or more accurately: LuaTEX, which is what we’re using here) doesn’t
know what specific signal was used. When the preamble is serialized it does keep track of the last so-
called match character. This is why we see this inconsistency in rendering.

A simple solution would be to store the used signal for the match argument, which probably only takes a
few lines of extra code (using a nine integer array instead of a single integer), and use that instead. I’m
willing to see that as a bug in LuaTEX but when I ran into it I was playing with something else: adding the
ability to prevent storing unused arguments. But the resulting confusion can make one wonder why we
do not always serialize the match character as #.

It was then that I noticed that the preamble stored the match tokens and not the number and that TEX in
fact assumes that no mixture is used. And, after prototyping that in itself trivial change I decided that
in order to properly serialize this new feature it also made sense to always serialize the match token as
#. I simply prefer consistency over confusion and so I caught two flies in one stroke. The new feature is
indicated with a #0 parameter:

\bgroup
\catcode`?=\catcode`#

\def\foo ?1?0?3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo ?1#0?3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo #1#2?3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo ?1#2?3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\crlf
\def\foo ?1?2#3{?1?2?3} \meaning\foo\space=>\foo{1}{2}{3}\crlf
\egroup

macro:#1#0#3->#1#2#3 =>13
macro:#1#0#3->#1#2#3 =>13
macro:#1#2#3->#1#2#3 =>123
macro:#1#2#3->#1#2#3 =>123
macro:#1#2#3->#1#2#3 =>123

So, what is the rationale behind this new #0 variant? Quite often you don’t want to do something with an
argument at all. This happens when a macro acts upon for instance a first argument and then expands
another macro that follows up but only deals with one of many arguments and discards the rest. Then
it makes no sense to store unused arguments. Keep in mind that in order to use it more than once an
argument does need to be stored, because the parser only looks forward. In principle there could be
some optimization in case the tokens come from macros but we leave that for now. So, when we don’t
need an argument, we can avoid storing it and just skip over it. Consider the following:

\def\foo #1{\ifnum#1=1 \expandafter\fooone\else\expandafter\footwo\fi}
\def\fooone#1#0{#1}
\def\footwo#0#2{#2}
\foo{1}{yes}{no}
\foo{0}{yes}{no}

We get:

yes no

67 Parameters

Just for the record, tracing of a macro shows that indeed there is no argument stored:

\def\foo#1#0#3{....}
\foo{11}{22}{33}
\foo #1#0#3->....
#1<-11
#2<-
#3<-33

Now, you can argue, what is the benefit of not storing tokens? As mentioned above, the TEX engines do
their own memory management.7 This has large benefits in performance especially when one keeps in
mind that tokens get allocated and are recycled constantly (take only lookahead and push back).

However, even if this means that storing a couple of unused arguments doesn’t put much of a dent in
performance, it does mean that a token sits somewhere in memory and that this bit of memory needs to
get accessed. Again, this is nobigdeal ona computerwhere aTEX job can takeone core andbasically is the
only process fighting for cpu cache usage. But less memory access might be more relevant in a scenario
ofmultiple virtualmachines running on the same hardware ormultiple TEX processes on onemachine. I
didn’t carefully measure that so I might be wrong here. Anyway, it’s always good to avoid moving around
data when there is no need for it.

Just to temper expectations with respect to performance, here are some examples:

\catcode`!=9 % ignore this character
\firstoftwoarguments
{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}

\secondoftwoarguments
{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}

\secondoffourarguments
{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}
{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}

In ConTEXt we define these macros as follows:

\def\firstoftwoarguments #1#2{#1}
\def\secondoftwoarguments #1#2{#2}
\def\secondoffourarguments#1#2#3#4{#2}

The performance of 2 million expansions is the following (probably half or less on a more modern ma-
chine):

macro total step
\firstoftwoarguments 0.245 0.000000123
\secondoftwoarguments 0.251 0.000000126
\secondoffourarguments 0.390 0.000000195

But we could use this instead:

\def\firstoftwoarguments #1#0{#1}
\def\secondoftwoarguments #0#2{#2}
\def\secondoffourarguments#0#2#0#0{#2}

7 An added benefit is that dumping and undumping is relatively efficient too.

Parameters 68

which gives:

macro total step
\firstoftwoarguments 0.229 0.000000115
\secondoftwoarguments 0.236 0.000000118
\secondoffourarguments 0.323 0.000000162

So, no impressive differences, especially when one considers that when thatmany expansions happen in
a run, getting the document itself rendered plus expanding real arguments (not something defined to be
ignored) will take waymore time compared to this. I always test an extension like this on the test suite8 as
well as the LuaMetaTEXmanual (which takes about 11 seconds) and although one can notice a little gain,
itmakesmore sense not to playmusic on the samemachine aswe run the TEX job, if gainingmilliseconds
is that important. But, as said, it’s more about unnecessary memory access than about cpu cycles.

This extension is downward compatible and its overhead can be neglected. Okay, the serialization now
always uses #but it was inconsistent before, so I’mwilling to sacrifice that (and I’mpretty sure noConTEXt
user cares or will even notice). Also, it’s only in LuaMetaTEX (for now) so that other macro packages don’t
suffer from this patch. The few cases where ConTEXt can benefit from it are easy to isolate for MkIV and
lmtx so we can support LuaTEX and LuaMetaTEX.

I mentioned LuaTEX and how it serializes, but for the record, let’s see how pdfTEX, which is very close to
original TEX in terms of source code, does it. If we have this input:

\catcode`D=\catcode`#
\catcode`O=\catcode`#
\catcode`N=\catcode`#
\catcode`-=\catcode`#
\catcode`K=\catcode`#
\catcode`N=\catcode`#
\catcode`U=\catcode`#
\catcode`T=\catcode`#
\catcode`H=\catcode`#

\def\dek D1O2N3-4K5N6U7T8H9{#1#2#3 #4#6#7#8#9}

{\meaning\dek \tracingall \dek don{}knuth}

Themeaning gets typeset as:

macro:D1O2N3-4K5N6U7T8H9->H1H2H3 H4H6H7H8H9don nuth

while the tracing reports:

\dek D1O2N3-4K5N6U7T8H9->H1H2H3 H5H6H7H8H9
D1<-d
O2<-o
N3<-n
-4<-
K5<-k

8 Currently some1600files that take 24minutes plus orminus 30 seconds to process on ahigh end2013 laptop. The 260pagemanual
with lots of tables, verbatim andMetaPost images takes around 11 seconds. A fewmillisecondsmore or less don’t really show here.
I only time these runs because I want to make sure that there are no dramatic consequences.

69 Parameters

N6<-n
U7<-u
T8<-t
H9<-h

The reason for the difference, as mentioned, is that the tracing uses the template and therefore uses the
stored match token, while the meaning uses the reference match tokens that carry the number and at
that time has no access to the original match token. Keeping track of that for the sake of tracing would
notmake sense anyway. So, traditional TEX,which iswhat pdfTEX is very close to, uses the last usedmatch
token, the H. Maybe this example can convince you that dropping that bit of log related compatibility is
not that much of a problem. I just tell myself that I turned an unwanted side effect into a new feature.

A few side notes

The fact that characters can be given a special meaning is one of the charming properties of TEX. Take
these two cases:

\bgroup\catcode`\&=5 &\egroup
\bgroup\catcode`\!=5 !\egroup

In both lines there is now an alignment character used outside an alignment. And, in both cases the error
message is similar:

! Misplaced alignment tab character &
! Misplaced alignment tab character !

So, indeed the right character is shown in the message. But, as soon as you ask for help, there is a dif-
ference: in the first case the help is specific for a tab character, but in the second case a more generic
explanation is given. Just try it.

The reason is an explicit check for the ampersand being used as tab character. Such is the charm of TEX.
I’ll probably opt for a trivial change to be consistent here, although in ConTEXt the ampersand is just an
ampersand so no user will notice.

There are a fewmore places where, although in principle any character can serve any purpose, there are
hard coded assumptions, like $ being used for math, so amissing dollar is reported, even if math started
with another character beingused to entermathmode. Thismakes sensebecause there is nourgentneed
to keep track of what specific character was used for entering math mode. An even stronger argument
could be that TEXies expect dollars to be used for that purpose. Of course this works fine:

\catcode`€=\catcode`$
€ \sqrt{x^3} €

But when we forget an €we get messages like:

! Missing $ inserted

or more generic:

! Extra }, or forgotten $

which is definitely a confirmation of “America first”. Of course we can compromise in display math be-
cause this is quite okay:

Parameters 70

\catcode`€=\catcode`$
$€ \sqrt{x^3} €$

unless of course we forget the last dollar in which case we are told that

! Display math should end with $$

so no matter what, the dollar wins. Given how ugly the Euro sign looks I can live with this, although I
always wonder what character would have been taken if TEX was developed in another country.

71 Parameters

Parsing 72

12 Parsing

Themacromechanism is TEX is quite powerful and once you understand the concept of mixing parame-
ters and delimiters you can do a lot with it. I assume that you know what we’re talking about, otherwise
quit reading. When grabbing arguments, there are a few catches.

• When they are used, delimiters are mandate: TEX will go on reading an argument till the (current)
delimiter condition is met. This means that when you forget one you end up with way more in the
argument than expected or even run out of input.

• Because specified arguments and delimiters are mandate, when you want to parse input, you often
need multi-step macros that first pick up the to be parsed input, and then piecewise fetch snippets.
Bogus delimiters have to be appended to the original in order to catch a run away argument and check-
ing has to be done to get rid of themwhen all is ok.

The first item can be illustrated as follows:

\def\foo[#1]{...}

When \foo gets expanded TEX first looks for a [and then starts collecting tokens for parameter #1. It
stops doing that when aa] is seen. So,

\starttext
\foo[whatever

\stoptext

will for sure give an error. When collecting tokens, TEX doesn’t expand them so the \stoptext is just
turned into a token that gets appended.

The second item is harder to explain (or grasp):

\def\foo[#1=#2]{(#1/#2)}

Here we expect a key and a value, so these will work:

\foo[key=value]
\foo[key=]

while these will fail:

\foo[key]
\foo[]

unless we have:

\foo[key]=]
\foo[]=]

But, whenprocessing the result, we thenneed to analyze the found arguments and correct for thembeing
wrong. For instance, argument #1 can become] or here key]. When indeed a valid key/value combina-
tion is givenweneed to get rid of the two ‘fixup’ tokens=]. Normally wewill havemultiple key/value pairs
separated by a comma, and in practice we only need to catch the missing equal because we can ignore
empty cases. There are plenty of examples (rather old old code but also more modern variants) in the

73 Parsing

ConTEXt code base.

I will now show some newmagic that is available in LuaMetaTEX as experimental code. It will be tested in
lmtx for a while andmight evolve in the process.

\def\foo#1=#2,{(#1/#2)}

\foo 1=2,\ignorearguments
\foo 1=2\ignorearguments
\foo 1\ignorearguments
\foo \ignorearguments

Here we pick up a key and value separated by an equal sign. We end the input with a special signal com-
mand: \ignorearguments. This tells the parser to quit scanning. So, we get this, without any warning
with respect to a missing delimiter of running away:

(1/2)(1/2)(1/)(/)

The implementation is actually fairly simple and adds not much overhead. Alternatives (and I pondered
a few) are just too messy, would remind me too much of those awful expression syntaxes, and definitely
impact performance of macro expansion, therefore: a no-go.

Using this new feature, we can implement a key value parser that does a sequence. The prototypes used
to get heremade only use of this one new feature and therefore still had to do some testing of the results.
But, after looking at the code, I decided that a few more helpers could make better looking code. So this
is what I ended up with:

\def\grabparameter#1=#2,%
{\ifarguments\or\or

% (\whatever/#1/#2)\par%
\expandafter\def\csname\namespace#1\endcsname{#2}%
\expandafter\grabnextparameter

\fi}

\def\grabnextparameter
{\expandafterspaces\grabparameter}

\def\grabparameters[#1]#2[#3]%
{\def\namespace{#1}%
\expandafterspaces\grabparameter#3\ignorearguments\ignorearguments}

Now, this one actually does what the ConTEXt \getparameters command does: setting variables in a
namespace. Being a parameter driven macro package this kind of macros have been part of ConTEXt
since the beginning. There are some variants and we also need to deal with the multilingual interface.
Actually, MkIV (and therefore lmtx) do things a bit different, but the same principles apply.

The \ignorearguments quits the scanning. Here we need two because we actually quit twice. The
\expandafterspaces can be implemented in traditional TEX macros but I though it is nice to have it
this way; the fact that I only now added it hasmore to dowith cosmetics. One could use the already some-
what older extension \futureexpandis (which expands the second or third token depending seeing the
first, in this variant ignoring spaces) or a bunch of good old primitives to do the same. The new condi-
tional\ifarguments canbeused to act upon thenumberof arguments given. It reflects themost recently
expandedmacro. There is also a \lastarguments primitive (that provides the number of arguments.

Parsing 74

So, what are the benefits? Youmight think that it is about performance, but in practice there are not that
many parameter settings going on. When I process the LuaMetaTEX manual, only some 5000 times one
ormore parameters are set. And even in a waymore complex document that I askedmy colleague to run
I was a bit disappointed that only some 30.000 cases were reported. I know of users who have documents
with hundreds of thousands of cases, but compared to the rest of processing this is not where the per-
formance bottleneck is.9 This means that a change in implementation like the above is not paying off in
significantly better runtime: all these low level mechanisms in ConTEXt have been very well optimized
over the years. And faster machines made old bottlenecks go away anyway. Take this use case:

\grabparameters
[foo]
[key0=value0,
key1=value1,
key2=value2,
key3=value3]

After this, parameters can be accessed with:

\def\getvalue#1#2{\csname#1#2\endcsname}

used as:

\getvalue{foo}{key2}

which takes care of characters normally not permitted in macro names, like the digits in this example.
Of course some namespace protection can be added, like adding a colon between the namespace and the
key, but let’s take just this one.

Some 10.000 expansions of the grabber take on my machine 0.045 seconds while the original
\getparameters takes 0.090 so although for this case we’re twice as fast, the 0.045 difference will not
be noticed on a real run. After all, when these parameters are set some action will take place. Also,
we don’t actually use this macro for collecting settings with the \setupsomething commands, so the
additional overhead that is involved adds a baseline to performance that can turn any gain into noise.
But some users might notice some gain. Of course this observation might change once we apply this
trickery inmore places than parameter parsing, because I have to admit that theremight be other places
in the support macros where we can benefit: less code, double performance, but these are all support
macros thatmade sense inMkII and not thatmuch inMkIV or lmtx and are kept just for convenience and
backward compatibility. Think of some list processingmacros. So, as a kind of nostalgic trip I decided to
rewrite some low level macros anyway, if only to see what is no longer used and/or tomake the code base
somewhat (c)leaner.

Elsewhere I introduce the #0 argument indicator. That one will just gobbles the argument and does not
store a token list on the stack. It saves somememory access and token recycling when arguments are not
used. Another special indicator is #+. That one will flag an argument to be passed as-is. The #- variant
will simply discard an argument andmove on. The following examples demonstrate this:

\def\foo [#1]{\detokenize{#1}}
\def\ofo [#0]{\detokenize{#1}}
\def\oof [#+]{\detokenize{#1}}
\def\fof[#1#-#2]{\detokenize{#1#2}}

9 Think of thousands of pages of tables with cell settings applied.

75 Parsing

\def\fff[#1#0#3]{\detokenize{#1#3}}

\meaning\foo\ : <\foo[{123}]> \crlf
\meaning\ofo\ : <\ofo[{123}]> \crlf
\meaning\oof\ : <\oof[{123}]> \crlf
\meaning\fof\ : <\fof[123]> \crlf
\meaning\fff\ : <\fof[123]> \crlf

This gives:

macro:[#1]->\detokenize {#1} : <123>
macro:[#0]->\detokenize {#1} : <>
macro:[#+]->\detokenize {#1} : <{123}>
macro:[#1#-#2]->\detokenize {#1#2} : <13>
macro:[#1#0#3]->\detokenize {#1#3} : <13>

Whenplayingwithnew features like theonedescribedhere, itmakes sense touse theminexistingmacros
so that they get well tested. Some of the low level system files come in different versions: for MkII, MkIV
and lmtx. TheMkII files often also have the older implementations, so they are also good for looking at the
history. The lmtx files can be leaner andmeaner than theMkIVfiles because they use the latest features.10

When I was rewriting some of these low level MkIV macros using the newer features, at some point I
wondered why I still had to jump through some hoops. Why not just add some more primitives to deal
with that? After all, LuaTEX and LuaMetaTEX already have more primitives that are helpful in parsing,
so a few dozen more lines don’t hurt. As long as these primitives are generic and not that specific. In
this particular case we talk about two new conditionals (in addition to the already present comparison
primitives):

\ifhastok <token> {<token list>}
\ifhastoks {<token list>} {<token list>}
\ifhasxtoks {<token list>} {<token list>}

You can probably guess what they do from their names. The last one is the expandable variant of the
second one. The first one is the fast one. When playing with these I decided to redo the set checker. In
MkII that one is done in good old TEX, in MkIV we use Lua. So, how about going back to TEX?

\ifhasxtoks {cd} {abcdef}

This check is true. But that doesn’t work well with a comma separated list, but there is a way out:

\ifhasxtoks {,cd,} {,ab,cd,ef,}

However, when I applied that a user reported that it didn’t handle optional spaces before commas. So how
do we deal with such optional characters tokens?

\def\setcontains#1#2{\ifhasxtoks{,#1,}{,#2,}}

\ifcondition\setcontains{cd}{ab,cd,ef}YES \else NO \fi
\ifcondition\setcontains{cd}{ab, cd, ef}YES \else NO \fi

10 Some 70 primitives present in LuaTEX are not in LuaMetaTEX. On the other hand there are also about 70 new primitives. Of those
gone, most concerned the backend, fonts or no longer relevant features from other engines. Of those new, some are really new
primitives (conditionals, expansion magic), some control previously hardwired behaviour, some give access to properties of for
instance boxes, and some are just variants of existing ones but with options for control.

Parsing 76

We get:

YES NO

The \ifcondition is an old one. When nested in a condition it will be seen as an \if... by the fast skip-
ping scanner, but when expanded it will go on and a followingmacro has to expand to a proper condition.
That said, we can take care of the optional space by entering some new territory. Look at this:

\def\setcontains#1#2{\ifhasxtoks{,\expandtoken 9 "20 #1,}{,#2,}}

\ifcondition\setcontains{cd}{ab,cd,ef}YES \else NO \fi
\ifcondition\setcontains{cd}{ab, cd, ef}YES \else NO \fi

We get:

YES YES

So how does that work? The \expandtoken injects a space token with catcode 9 whichmeans that it is in
the to be ignored category. When a to be ignored token is seen, and the to be checked token is a character
(letter, other, space or ignored) then the character codewill be compared. When theymatch, wemove on,
otherwise we just skip over the ignored token (here the space).

In the ConTEXt code base there are already files that are specific for MkIV and lmtx. The most visible
difference is that we use the \orelse primitive to construct nicer test trees, and we also use some of the
additional \future... and \expandafter... features. The extensions discussed here make for the
most recent differences (we’re talking end May 2020).

After implementing this trick I decided to look at themacro definitionmechanismonemore time and see
if I could also use this there. Before I demonstrate another next feature, I will again show the argument
extensions, this time with a fourth variant:

\def\TestA#1#2#3{{(#1)(#2)(#3)}}
\def\TestB#1#0#3{(#1)(#2)(#3)}
\def\TestC#1#+#3{(#1)(#2)(#3)}
\def\TestD#1#-#2{(#1)(#2)}

The last one specifies a to be thrashed argument: #-. It goes further than the second one (#0) which still
keeps a reference. This is why in this last case the third argument gets number 2. Themeanings of these
four are:

macro:#1#2#3->{(#1)(#2)(#3)}
macro:#1#0#3->(#1)(#2)(#3)
macro:#1#+#3->(#1)(#2)(#3)
macro:#1#-#2->(#1)(#2)

There are some subtle differences between these variants, as you can see from the following examples:

\TestA1{\red 2}3
\TestB1{\red 2}3
\TestC1{\red 2}3
\TestD1{\red 2}3

Here you also see the side effect of keeping the braces. The zero argument (#0) is ignored, and the
thrashed argument (#-) can’t even be accessed.

77 Parsing

(1)(2)(3)
(1)()(3)
(1)(2)(3)
(1)(3)

In the next example we see two delimiters being used, a comma and a space, but they have catcode 9
which flags them as ignored. This is a signal for the parser that both the comma and the space can be
skipped. The zero arguments are still on the parameter stack, but the thrashed ones result in a smaller
stack, not that the later matters much on today’s machines.

\normalexpanded {
\def\noexpand\foo
\expandtoken 9 "2C % comma
\expandtoken 9 "20 % space
#1=#2]%

}{(#1)(#2)}

This means that the next tree expansions won’t bark:

\foo,key=value]
\foo, key=value]
\foo key=value]

or expanded:

(key)(value)
(key)(value)
(key)(value)

Now, why didn’t I add these primitives long ago already? After all, I already added dozens of new primi-
tives over the years. To quote Andrew Cuomo, what follows now are opinions, not facts.

Decades ago, when TEX showed up, there was no Internet. I remember that I got my first copy on floppy
disks. Computers were slow and memory was limited. The TEXbook was the main resource and writing
macroswas a kind of art. One could not look up solutions, so trial and errorwas a validway to go. Figuring
out what was efficient in terms of memory consumption and runtime was often needed too. I remember
meetings where one was not taken serious when not talking in the right ‘token’, ‘node’, ‘stomach’ and
‘mouth’ speak. Suggesting extensions could end up in being told that therewas no need because all could
be done in macros or even arguments of the “who needs that”. I must admit that nowadays I wonder to
what extend that was related to extensions taking away some of the craftmanship and showing off. In
a way it is no surprise that (even trivial to implement) extensions never surfaced. Of course then the
question is: will extensions that once were considered not of importance be used today? We’ll see.

Let’s end by saying that, as with other experiments, I might port some of the new features in LuaMetaTEX
to LuaTEX, but only after they have become stable and have been tested in lmtx for quite a while.

Tokens 78

13 Tokens

This is mostly a wrapup of some developments, and definitely not a tutorial.

Talking deep down TEX is talking about tokens and nodes. Roughly spoken, from the perspective of the
user, tokensarewhat goes inandstays in (asmacro, token list ofwhatever) andnodes iswhat get produced
and eventually results in output. A character in the input becomes one token (before expansion) and a
control sequence like\fooalso is turned into a token. Tokens canbe linked into lists. This actuallymeans
that in the enginewe can talk of tokens in twoways: the single itemwith properties that trigger actions, or
as compound itemwith that itemand a pointer to the next token (called link). In Lua speak tokenmemory
can be seen as:

fixmem = {
{ info, link },
{ info, link },
{ info, link },
{ info, link },
....

}

Both are 32 bit integers. The info is a combination of a command code (an operator) and a so called
chr code (operand) and these determine its behaviour. For instance the command code can indicate an
integer register and the chr code then indicates the number of that register. So, like:

fixmem = {
{ { cmd, chr}, index_into_fixmem },
{ { cmd, chr}, index_into_fixmem },
{ { cmd, chr}, index_into_fixmem },
{ { cmd, chr}, index_into_fixmem },
....

}

In the following line the characters that make three words are tokens (letters), so are the space (spacer),
the curly braces (begin- and endgroup token) and the bold face switch (which becomes one token which
resolves to a token list of tokens that trigger actions (in this case switching to a bolder font).

foo {\bf bar} foo

When TEX reads a line of input tokens are expanded immediately but a sequence can also become part fo
a macro body or token list. Here we have 3𝚏𝚘𝚘 + 1+ 1{ + 1\𝚋𝚏 + 3𝚋𝚊𝚛 + 1} + 1+ 3𝚏𝚘𝚘 = 14 tokens.

A control sequence normally starts with a backslash. Some are built in, these are called primitives, and
others are defined by the macro package or the user. There is a lookup table that relates the tokenized
control sequence to some action. For instance:

\def\foo{foo}

creates an entry that leads (directly or following a hash chain) to the three letter token list. Every time
the input sees \foo it gets resolved to that list via a hash lookup. However, once internalized and part of
a token list, it is a direct reference. On the other hand,

\the\count0

79 Tokens

triggers the \the action that relates to this control sequence, which then reads a next token and operates
on that. That next token itself expects a number as follow up. In the end the value of \count0 is found
and that one is also in the so called equivalent lookup table, in what TEX calls specific regions.

equivalents = {
{ level, type, value },
{ level, type, value },
{ level, type, value },
...

}

The value is inmost cases similar to the info (cmd & chr) field in fixmem, but one difference is that coun-
ters, dimensions etc directly store their value, which is why we sometimes need the type separately, for
instance in order to reclaim memory for glue or node specifications. It sound complicated and it is, but
as long as you get a rough idea we can continue. Just keep in mind that tokens sometimes get expanded
on the fly, and sometimes just get stored.

There are a lot of primitives andeachhas aunique info. The same is true for characters (each categoryhas
its own command code, so regular letters can be distinguished from other tokens, comment signs, math
triggers etc). All important basic bits are in table of equivalents: macros as well as registers although the
meaning of a macro and content of token lists lives in the fixmem table and the content of boxes in so
called node lists (nodes have their ownmemory).

In traditional TEX the lookup table for primitives, registers and macros is as compact as can be: it is an
array of so called 32 bitmemorywords. These can be divided into halfs and quarters, so in the source you
find terms like halfword and quarterword. The lookup table is a hybrid:

[level 8] [type 8] [value 16] | [equivalent 32]
[level 8] [type 8] [value 16] | [equivalent 32]
[level 8] [type 8] [value 16] | [equivalent 32]
...

Thementioned counters and such are directly encoded in an equivalent and the rest is a combination of
level, type and value. The level is used for the grouping, and in for instance pdfTEX there can therefore be
at most 255 levels. In LuaTEX we use a wider model. There we have 64 bit memory words which means
that we have waymore levels and don’t need to have this dual nature:

[level 16] [type 16] [value 32]
[level 16] [type 16] [value 32]
[level 16] [type 16] [value 32]
...

We already showed a Lua representation. The type in this table is what a command code is in an ‘info’
field. In such a token the integer encodes the command as well as a value (called chr). In the lookup
table the type is the command code. When TEX is dealing with a control sequences it looks at the type,
otherwise it filters the command from the token integer. This means that a token cannot store an integer
(or dimension), but the lookup table actually can do that. However, commands can limit the range, for
instance characters are bound by what Unicode permits.

Internally, LuaTEX still uses these ranges of fast accessible registers, like counters, dimensions and at-
tributes. However, we saw that in LuaTEX they don’t overlap with the level and type. In LuaTEX, at least till
version 1.13 we still have the shadow array for levels but in LuaMetaTEX we just use those in the equiv-
alents lookup table. If you look in the Pascal source you will notice that arrays run from [somemin ...

Tokens 80

somemax] which in the C source would mean using offsets. Actually, the shadow array starts at zero so
we waste the part that doesn’t need shadowing. It is good to remind ourselves that traditional TEX is 8 bit
character based.

The equivalents lookup table has all kind of special ranges (combined into regions of similar nature, in
TEX speak), like those for lowercase mapping, specific catcode mappings, etc. but we’re still talking of
𝑛 × 256 entries. In LuaTEX all these mappings are in dedicated sparse hash tables because we need to
support the full Unicode repertoire. This means that, while on the one hand LuaTEX uses more memory
for the lookup table the number of slots can be less. But still there was thewaste of the shadow level table:
I didn’t calculate the exact saving of ditching that one, but I bet it came close to what was available as total
memory for programs and data on the firstmachines that I used for running TEX. But . . . aftermore than
a decade of LuaTEX we now reclaimed that space in LuaMetaTEX.11

Now, in case you’re interested (and actually I just write it down because I don’t want to forget it myself)
the lookup table in LuaMetaTEX is layout as follows

the hash table
some frozen primitives
current and defined fonts one slot + many pointers
undefined control sequence one slot
internal and register glue pointer to node
internal and register muglue pointer to node
internal and register toks pointer to token list
internal and register boxes pointer to node list
internal and register counts value in token
internal and register attributes value in token
internal and register dimens value in token
some special data structures pointer to node list
the (runtime) extended hash table

Normally a user doesn’t need to know anything about these specific properties of the engine and it might
comfort you to know that for a long time I could stay away from thesedetails. Onedifferencewith the other
engines is that we have internal variables and registers split more explicitly. The special data structures
have their ownslots andarenot just put somewhere (semi random). The initialization is bitmoregranular
in that we properly set the types (cmd codes) for registers which in turn is possible because for instance
we’re able to distinguish glue types. This is all part of coming up with a bit more consistent interface to
tokens from the Lua end. It also permits diagnostics.

Anyway, we now are ready for some more details about tokens. You don’t need to understand all of it in
order to define decent macros. But when you are using LuaTEX and do want to mess around here is some
insight. Assume we have defined these macros:

\def\MacroA{a} \def\MacroB{b}
\def\macroa{a} \def\macrob{b}
\def\MACROa{a} \def\MACROb{b}

How does that end up internally?

cmd name chr cs rawchr
\scratchcounterone 80 register_int 260 75231 459190

11 Don’t expect a gain in performance, although using lessmemorymight pay back on a virtual machine or when TEX has to share the
cpu cache.

81 Tokens

\scratchcountertwo 80 register_int 261 75279 459191
\scratchdimen 84 register_dimen 257 2162 590283
\scratchtoks 78 register_toks 257 655603 327989
\scratchcounter 80 register_int 257 9310 459187
\letterpercent 128 call 0 101735 2726
\everypar 79 internal_toks 1 27262 327720
\% 74 char_given 37 39
\pagegoal 93 set_page_property 0 27028
\pagetotal 93 set_page_property 1 54424
\hangindent 85 internal_dimen 17 105414 590020
\hangafter 81 internal_int 42 52526 458849
\dimdim 116 undefined_cs 0 196624
\relax 0 relax 1114112 3380
\dimen 102 register 2 3190
\stoptext 129 protected_call 0 29178 57915
\MacroA 128 call 0 5553 668403
\MacroB 128 call 0 666484 619428
\MacroC 116 undefined_cs 0 196624
\macroa 128 call 0 6609 668187
\macrob 128 call 0 666485 667810
\macroc 116 undefined_cs 0 196624
\MACROa 128 call 0 4625 668449
\MACROb 128 call 0 4626 668503
\MACROc 116 undefined_cs 0 196624

We show the raw chr value but in the Lua interface these are normalized to for instance proper register
indices. This is because the raw numbers can for instance be indices into memory or some Unicode
reference with catcode specific bits set. But, while these indices are real and stable, these offsets can
actually change when the implementation changes. For that reason, in LuaMetaTEX we can better talk of
command codes as main indicator and:

subcommand for tokens that have variants, like \ifnum
register indices for the 64K register banks, like \count 0
internal indices for internal variables like \parindent
characters specific Unicode slots combined with catcode
pointers to token lists, macros, Lua functions, nodes

This so called cs number is a pointer into the table of equivalents. That number results comes from the
hash table. Amacro name, when scanned the first time, is still a sequence of bytes. This sequence is used
to compute a hash number, which is a pointer to a slot in the lower part of the hash (lookup) table. That
slot points to a string and a next hash entry in the higher end. A lookup goes as follows:

1. compute the index into the hash table from the string
2. goto the slot with that index and compare the string field
3. when there is no match goto the slot indicated by the next field
4. compare again and keep following next fields till there is no follow up
5. optionally create a new entry
6. use the index of that entry as index in the table of equivalents

So, in Lua speak, we have:

hashtable = {

Tokens 82

-- lower part, accessed via the calculated hash number
{ stringpointer, nextindex },
{ stringpointer, nextindex },
...
-- higher part, accessed by following nextindex
{ stringpointer, nextindex },
{ stringpointer, nextindex },
...

}

Eventually, after followinga lookupchain in thehash tabl;e, we endupat pointer to the equivalents lookup
table that we already discussed. From then on we’re talking tokens. When you’re lucky, the list is small
and youhave a quickmatch. Themaximum initial hash index is not that large, around 64K (double that in
LuaMetaTEX), so in practice there will often be some indirect (multi-compare) match but increasing the
lower end of the hash table might result in less string comparisons later on, but also increases the time
to calculate the initial hash needed for accessing the lower part. Here you can sort of see that:

\dostepwiserecurse{`a}{`z}{1}{
\expandafter\def\csname whatever\Uchar#1\endcsname
{}

}
\dostepwiserecurse{`a}{`z}{1}{

\expandafter\let\csname somemore\Uchar#1\expandafter\endcsname
\csname whatever\Uchar#1\endcsname

}

cmd name chr cs rawchr
\whatevera 128 call 0 666491 663113
\somemorea 128 call 0 666505 663113
\whateverb 128 call 0 666492 668685
\somemoreb 128 call 0 57246 668685
\whateverc 128 call 0 56989 667831
\somemorec 128 call 0 666506 667831
\whateverd 128 call 0 666493 670730
\somemored 128 call 0 666507 670730
\whatevere 128 call 0 666494 670542
\somemoree 128 call 0 666508 670542
\whateverf 128 call 0 666495 670668
\somemoref 128 call 0 57250 670668
\whateverg 128 call 0 56993 668396
\somemoreg 128 call 0 666509 668396
\whateverh 128 call 0 666496 668634
\somemoreh 128 call 0 666510 668634
\whateveri 128 call 0 56995 667968
\somemorei 128 call 0 57253 667968
\whateverj 128 call 0 666497 668620
\somemorej 128 call 0 57254 668620
\whateverk 128 call 0 56997 668596
\somemorek 128 call 0 57255 668596
\whateverl 128 call 0 56998 669320
\somemorel 128 call 0 666511 669320

83 Tokens

\whateverm 128 call 0 56999 670399
\somemorem 128 call 0 57257 670399
\whatevern 128 call 0 57000 670383
\somemoren 128 call 0 57258 670383
\whatevero 128 call 0 57001 668652
\somemoreo 128 call 0 57259 668652
\whateverp 128 call 0 666498 668699
\somemorep 128 call 0 57260 668699
\whateverq 128 call 0 57003 664927
\somemoreq 128 call 0 57261 664927
\whateverr 128 call 0 666499 668694
\somemorer 128 call 0 666512 668694
\whatevers 128 call 0 666500 668331
\somemores 128 call 0 666513 668331
\whatevert 128 call 0 666501 664680
\somemoret 128 call 0 57264 664680
\whateveru 128 call 0 666502 667153
\somemoreu 128 call 0 57265 667153
\whateverv 128 call 0 666503 670488
\somemorev 128 call 0 57266 670488
\whateverw 128 call 0 57009 668666
\somemorew 128 call 0 57267 668666
\whateverx 128 call 0 57010 670498
\somemorex 128 call 0 57268 670498
\whatevery 128 call 0 57011 670414
\somemorey 128 call 0 57269 670414
\whateverz 128 call 0 666504 670421
\somemorez 128 call 0 57270 670421

The command code indicates a macro and the action related to it is an expandable call. We have no sub
command12 so that column shows zeros. The fifth column is the hash entry which can bring us back to
the verbose name as needed in reporting while the last column is the index to into tokenmemory (watch
the duplicates for \letmacros: a ref count is kept in order to be able tomanage such shared references).
When you look a the cs column you will notice that some numbers are close which (I think) in this case
indicates some closeness in the calculated hash name and followed chain.

It will be clear that it is best to not make any assumptions with respect to the numbers which is why, in
LuaMetaTEX we sort of normalize themwhen accessing properties.

field meaning
command operator
cmdname internal name of operator
index sanitized operand
mode original operand
csname associated name
id the index in tokenmemory (a virtual address)
tok the integer representation

active true when an active character

12 We cheat a little here because chr actually is an index into tokenmemory but we don’t show them as such.

Tokens 84

expandable true when expandable command
protected true when a protected command
frozen true when a frozen command
user true when a user defined command

When a control sequence is an alias to an existing primitive, for instancemade by\let, the operand (chr)
picked up from its meaning. Take this:

\newif\ifmyconditionone
\newif\ifmyconditiontwo

\meaning\ifmyconditionone \crlf
\meaning\ifmyconditiontwo \crlf
\meaning\myconditiononetrue \crlf
\meaning\myconditiontwofalse \crlf

\myconditiononetrue \meaning\ifmyconditionone \crlf
\myconditiontwofalse\meaning\ifmyconditiontwo \crlf

\iffalse
\iffalse
macro:->\let \ifmyconditionone \iftrue
macro:->\let \ifmyconditiontwo \iffalse
\iftrue
\iffalse

Internally this is:

cmd name chr cs
\ifmyconditionone 123 if_test 23 666516
\ifmyconditiontwo 123 if_test 24 19025
\iftrue 123 if_test 23 6713
\iffalse 123 if_test 24 13157

The whole list of available commands is given below. Once they are stable the LuaMetaTEX manual will
document the accessors. In this chapter we use:

kind, min, max, fixedvalue token.get_range("primitive")
cmd, chr, cs = token.get_cmdchrcs("primitive")

The kind of command is given in the first column, which can have the following values:

0 no not accessible
1 regular possibly with subcommand
2 character the Unicode slot is encodes in the the token
3 register this is an indexed register (zero upto 64K)
4 internal this is an internal register (range given)
5 reference this is a reference to a node, Lua function, etc.
6 data a general data entry (kind of private)
7 token a token reference (that can have a followup)

cmd name min max default or subcommands

2 0 relax 0 0x10FFFF 0x110000
2 1 left_brace 0 0x10FFFF

85 Tokens

2 2 right_brace 0 0x10FFFF
2 3 math_shift 0 0x10FFFF
2 4 tab_mark 0 0x10FFFF
2 5 car_ret 0 0x10FFFF
2 6 mac_param 0 0x10FFFF
2 7 sup_mark 0 0x10FFFF
2 8 sub_mark 0 0x10FFFF
2 9 ignore 0 0x10FFFF
2 10 spacer 0 0x10FFFF
2 11 letter 0 0x10FFFF
2 12 other_char 0 0x10FFFF
2 13 par_end 0 0x10FFFF 0x110000
1 14 stop 0 1 0=end 1=dump
1 15 delim_num 0 1 0=delimiter 1=Udelimiter
2 16 char_num 0 0x10FFFF
1 17 math_char_num 0 3 0=mathchar 1=Umathchar 2=Umathcharnum 3=Umathclass
1 18 mark 0 2 0=mark 1=marks 2=clearmarks
8 19 node
1 20 xray 0 6 0=show 1=showbox 2=showthe 3=showlists 4=showgroups 5=showtokens 6=showifs
1 21 make_box 0 7 0=box 1=copy 2=lastbox 3=vsplit 4=tpack 5=vpack 6=hpack 7=vtop
1 22 hmove 0 1 0=moveright 1=moveleft
1 23 vmove 0 1 0=lower 1=raise
1 24 un_hbox 0 1 0=unhbox 1=unhcopy
1 25 un_vbox 0 1 0=unvbox 1=unvcopy
1 26 remove_item 0 2 0=unkern 1=unpenalty 2=unskip
1 27 hskip 0 4 0=hfil 1=hfill 2=hss 3=hfilneg 4=hskip
1 28 vskip 0 4 0=vfil 1=vfill 2=vss 3=vfilneg 4=vskip
1 29 mskip 0 0 0=mskip
1 30 kern 0 0 0=kern
1 31 mkern 0 0 0=mkern
1 32 leader_ship 0 5 0=shipout 1=<unavailable> 2=leaders 3=cleaders 4=xleaders 5=gleaders
1 33 halign 0 0 0=halign
1 34 valign 0 0 0=valign
1 35 no_align 0 0 0=noalign
1 36 vrule 0 1 0=vrule 1=novrule
1 37 hrule 0 1 0=hrule 1=nohrule
1 38 insert 0 0 0=insert
1 39 vadjust 0 0 0=vadjust
1 40 ignore_something 0 2 0=ignorespaces 1=ignorepars 2=ignorearguments
1 41 after_something 0 5 0=aftergroup 1=afterassignment 2=atendofgroup 3=aftergrouped 4=afteras-

signed 5=atendofgrouped
1 42 break_penalty 0 0 0=penalty
1 43 start_par 0 5 0=noindent 1=indent 2=quitvmode 3=snapshotpar 4=parattr 5=wrapuppar
1 44 ital_corr 0 0 0=/
1 45 accent 0 0 0=accent
1 46 math_accent 0 1 0=mathaccent 1=Umathaccent
1 47 discretionary 0 2 0=discretionary 1=- 2=automaticdiscretionary
1 48 eq_no 0 1 0=<unavailable> 1=<unavailable>
1 49 left_right 1 7 1=left 2=middle 3=right 4=Uvextensible 5=Uleft 6=Umiddle 7=Uright
1 50 math_comp 0 9 0=mathord 1=mathop 2=mathbin 3=mathrel 4=mathopen 5=mathclose 6=mathpunct

7=mathinner 8=underline 9=overline
1 51 limit_switch 0 3 0=displaylimits 1=limits 2=nolimits 3=ordlimits
1 52 above 0 7 0=above 1=over 2=atop 3=Uskewed 4=Uabove 5=Uover 6=Uatop 7=UUskewed
1 53 math_style 0 7 0=displaystyle 1=crampeddisplaystyle 2=textstyle 3=crampedtextstyle

4=scriptstyle 5=crampedscriptstyle 6=scriptscriptstyle 7=cramped-
scriptscriptstyle

1 54 math_choice 0 1 0=mathchoice 1=Ustack
1 55 non_script 0 0 0=nonscript
1 56 vcenter 0 0 0=vcenter
1 57 case_shift 0 1 0=lowercase 1=uppercase
1 58 message 0 1 0=message 1=errmessage
1 59 catcode_table 0 1 0=savecatcodetable 1=initcatcodetable
1 60 end_local 0 0 0=endlocalcontrol
5 61 lua_function_call 0 0x1FFFFF
5 62 lua_call 0 0x1FFFFF
1 63 in_stream 0 1 0=closein 1=openin
1 64 begin_group 0 0 0=begingroup
1 65 end_group 0 0 0=endgroup
1 66 omit 0 0 0=omit
1 67 ex_space 0 0 0=<space>

Tokens 86

1 68 boundary 0 3 0=noboundary 1=boundary 2=protrusionboundary 3=wordboundary
1 69 radical 0 7 0=radical 1=Uradical 2=Uroot 3=Uunderdelimiter 4=Uoverdelimiter 5=Udelim-

iterunder 6=Udelimiterover 7=Uhextensible
1 70 super_sub_script 0 7 0=Usubscript 1=Usuperscript 2=Usuperprescript 3=Usubprescript 4=Unosub-

script 5=Unosuperscript 6=Unosubprescript 7=Unosuperprescript
1 71 math_shift_cs 0 3 0=Ustartmath 1=Ustopmath 2=Ustartdisplaymath 3=Ustopdisplaymath
1 72 end_cs_name 0 0 0=endcsname
1 73 set_local_box 0 1 0=localleftbox 1=localrightbox
2 74 char_given 0 0x10FFFF
2 75 math_given 0 0x10FFFF
2 76 math_xgiven 0 0x10FFFF
1 77 some_item 0 40 0=lastpenalty 1=lastkern 2=lastskip 3=lastnodetype 4=lastnodesubtype 5=in-

putlineno 6=badness 7=luatexversion 8=luatexrevision 9=currentgrouplevel
10=currentgrouptype 11=currentiflevel 12=currentiftype 13=currentif-
branch 14=gluestretchorder 15=glueshrinkorder 16=fontid 17=fontcharwd
18=fontcharht 19=fontchardp 20=fontcharic 21=mathstyle 22=Umathcharclass
23=Umathcharfam 24=Umathcharslot 25=lastarguments 26=luavaluefunction
27=insertht 28=leftmarginkern 29=rightmarginkern 30=parshapelength 31=par-
shapeindent 32=parshapedimen 33=gluestretch 34=glueshrink 35=mutoglue
36=gluetomu 37=numexpr 38=dimexpr 39=glueexpr 40=muexpr

3 78 register_toks 0 0xFFFF
4 79 internal_toks 0 10 0=output 1=everypar 2=everymath 3=everydisplay 4=everyhbox 5=everyvbox

6=everyjob 7=everycr 8=everytab 9=errhelp 10=everyeof
3 80 register_int 0 0xFFFF
4 81 internal_int 0 119 0=pretolerance 1=tolerance 2=linepenalty 3=hyphenpenalty 4=exhyphenpenalty

5=clubpenalty 6=widowpenalty 7=displaywidowpenalty 8=brokenpenalty 9=binop-
penalty 10=relpenalty 11=predisplaypenalty 12=postdisplaypenalty 13=inter-
linepenalty 14=doublehyphendemerits 15=finalhyphendemerits 16=adjdemer-
its 17=mag 18=delimiterfactor 19=looseness 20=time 21=day 22=month 23=year
24=showboxbreadth 25=showboxdepth 26=shownodedetails 27=hbadness 28=vbad-
ness 29=pausing 30=tracingonline 31=tracingmacros 32=tracingstats 33=trac-
ingparagraphs 34=tracingpages 35=tracingoutput 36=tracinglostchars 37=trac-
ingcommands 38=tracingrestores 39=uchyph 40=outputpenalty 41=maxdeadcy-
cles 42=hangafter 43=floatingpenalty 44=globaldefs 45=fam 46=escapechar
47=defaulthyphenchar 48=defaultskewchar 49=endlinechar 50=newlinechar
51=language 52=lefthyphenmin 53=righthyphenmin 54=holdinginserts 55=er-
rorcontextlines 56=localinterlinepenalty 57=localbrokenpenalty 58=noligs
59=nokerns 60=nospaces 61=catcodetable 62=outputbox 63=setlanguage 64=ex-
hyphenchar 65=adjustspacing 66=adjustspacingstep 67=adjustspacingstretch
68=adjustspacingshrink 69=protrudechars 70=tracingfonts 71=tracingas-
signs 72=tracinggroups 73=tracingifs 74=tracingscantokens 75=tracingnest-
ing 76=predisplaydirection 77=lastlinefit 78=savingvdiscards 79=savinghy-
phcodes 80=matheqnogapstep 81=mathdisplayskipmode 82=mathscriptsmode
83=mathnolimitsmode 84=mathrulesmode 85=mathrulesfam 86=mathitalicsmode
87=shapemode 88=firstvalidlanguage 89=hyphenationbounds 90=mathsurround-
mode 91=predisplaygapfactor 92=hyphenpenaltymode 93=automatichyphen-
penalty 94=explicithyphenpenalty 95=automatichyphenmode 96=compoundhyphen-
mode 97=breakafterdirmode 98=exceptionpenalty 99=prebinoppenalty 100=pre-
relpenalty 101=mathpenaltiesmode 102=mathdelimitersmode 103=mathscriptbox-
mode 104=mathscriptcharmode 105=mathrulethicknessmode 106=mathflattenmode
107=luacopyinputnodes 108=fixupboxesmode 109=glyphdimensionsmode 110=in-
ternalcodesmode 111=supmarkmode 112=glyphdatafield 113=glyphstatefield
114=glyphscriptfield 115=matholdmode 116=pardirection 117=textdirection
118=mathdirection 119=linedirection

3 82 register_attr 0 0xFFFF
0 83 internal_attr
3 84 register_dimen 0 0xFFFF
4 85 internal_dimen 0 21 0=parindent 1=mathsurround 2=lineskiplimit 3=hsize 4=vsize 5=maxdepth

6=splitmaxdepth 7=boxmaxdepth 8=hfuzz 9=vfuzz 10=delimitershortfall
11=nulldelimiterspace 12=scriptspace 13=predisplaysize 14=displaywidth
15=displayindent 16=overfullrule 17=hangindent 18=<unavailable> 19=<un-
available> 20=emergencystretch 21=pxdimen

3 86 register_glue 0 0xFFFF
4 87 internal_glue 0 15 0=lineskip 1=baselineskip 2=parskip 3=abovedisplayskip 4=belowdisplayskip

5=abovedisplayshortskip 6=belowdisplayshortskip 7=leftskip 8=rightskip
9=topskip 10=splittopskip 11=tabskip 12=spaceskip 13=xspaceskip 14=parfill-
skip 15=mathsurroundskip

3 88 register_mu_glue 0 0xFFFF
4 89 internal_mu_glue 1 3 1=thinmuskip 2=medmuskip 3=thickmuskip
5 90 lua_value 0 0x1FFFFF

87 Tokens

1 91 set_font_property 0 5 0=hyphenchar 1=skewchar 2=lpcode 3=rpcode 4=efcode 5=fontdimen
1 92 set_aux 0 2 0=spacefactor 1=prevdepth 2=prevgraf
1 93 set_page_property 0 10 0=pagegoal 1=pagetotal 2=pagestretch 3=pagefilstretch 4=pagefillstretch

5=pagefilllstretch 6=pageshrink 7=pagedepth 8=deadcycles 9=insertpenalties
10=interactionmode

1 94 set_box_property 0 10 0=wd 1=ht 2=dp 3=boxdirection 4=boxorientation 5=boxxoffset 6=boxyoffset
7=boxxmove 8=boxymove 9=boxtotal 10=boxattr

7 95 set_specification
1 96 def_char_code 0 9 0=catcode 1=lccode 2=uccode 3=sfcode 4=mathcode 5=Umathcode 6=Umathcodenum

7=delcode 8=Udelcode 9=Udelcodenum
1 97 def_family 0 2 0=textfont 1=scriptfont 2=scriptscriptfont
1 98 set_math_param 0 114 0=Umathquad 1=Umathaxis 2=Umathspacingmode 3=Umathoperatorsize 4=Umath-

overbarkern 5=Umathoverbarrule 6=Umathoverbarvgap 7=Umathunderbarkern
8=Umathunderbarrule 9=Umathunderbarvgap 10=Umathradicalkern 11=Umathrad-
icalrule 12=Umathradicalvgap 13=Umathradicaldegreebefore 14=Umathradi-
caldegreeafter 15=Umathradicaldegreeraise 16=Umathstackvgap 17=Umathstack-
numup 18=Umathstackdenomdown 19=Umathfractionrule 20=Umathfractionnumvgap
21=Umathfractionnumup 22=Umathfractiondenomvgap 23=Umathfractiondenomdown
24=Umathfractiondelsize 25=Umathskewedfractionhgap 26=Umathskewedfraction-
vgap 27=Umathlimitabovevgap 28=Umathlimitabovebgap 29=Umathlimitabovek-
ern 30=Umathlimitbelowvgap 31=Umathlimitbelowbgap 32=Umathlimitbelowkern
33=Umathnolimitsubfactor 34=Umathnolimitsupfactor 35=Umathunderdelimiter-
vgap 36=Umathunderdelimiterbgap 37=Umathoverdelimitervgap 38=Umathoverde-
limiterbgap 39=Umathsubshiftdrop 40=Umathsupshiftdrop 41=Umathsubshiftdown
42=Umathsubsupshiftdown 43=Umathsubtopmax 44=Umathsupshiftup 45=Umathsup-
bottommin 46=Umathsupsubbottommax 47=Umathsubsupvgap 48=Umathspacebefor-
escript 49=Umathspaceafterscript 50=Umathconnectoroverlapmin 51=Umathor-
dordspacing 52=Umathordopspacing 53=Umathordbinspacing 54=Umathordrelspac-
ing 55=Umathordopenspacing 56=Umathordclosespacing 57=Umathordpunctspac-
ing 58=Umathordinnerspacing 59=Umathopordspacing 60=Umathopopspacing
61=Umathopbinspacing 62=Umathoprelspacing 63=Umathopopenspacing 64=Umath-
opclosespacing 65=Umathoppunctspacing 66=Umathopinnerspacing 67=Umathbi-
nordspacing 68=Umathbinopspacing 69=Umathbinbinspacing 70=Umathbinrelspac-
ing 71=Umathbinopenspacing 72=Umathbinclosespacing 73=Umathbinpunctspac-
ing 74=Umathbininnerspacing 75=Umathrelordspacing 76=Umathrelopspac-
ing 77=Umathrelbinspacing 78=Umathrelrelspacing 79=Umathrelopenspacing
80=Umathrelclosespacing 81=Umathrelpunctspacing 82=Umathrelinnerspac-
ing 83=Umathopenordspacing 84=Umathopenopspacing 85=Umathopenbinspacing
86=Umathopenrelspacing 87=Umathopenopenspacing 88=Umathopenclosespacing
89=Umathopenpunctspacing 90=Umathopeninnerspacing 91=Umathcloseordspac-
ing 92=Umathcloseopspacing 93=Umathclosebinspacing 94=Umathcloserelspacing
95=Umathcloseopenspacing 96=Umathcloseclosespacing 97=Umathclosepunctspac-
ing 98=Umathcloseinnerspacing 99=Umathpunctordspacing 100=Umathpunc-
topspacing 101=Umathpunctbinspacing 102=Umathpunctrelspacing 103=Umath-
punctopenspacing 104=Umathpunctclosespacing 105=Umathpunctpunctspac-
ing 106=Umathpunctinnerspacing 107=Umathinnerordspacing 108=Umathin-
neropspacing 109=Umathinnerbinspacing 110=Umathinnerrelspacing 111=Umath-
inneropenspacing 112=Umathinnerclosespacing 113=Umathinnerpunctspacing
114=Umathinnerinnerspacing

7 99 set_font
7 100 def_font
6 101 data 0 0x1FFFFF
1 102 register 0 4 0=count 1=attribute 2=dimen 3=skip 4=muskip
1 103 combine_toks 0 7 0=toksapp 1=etoksapp 2=tokspre 3=etokspre 4=gtoksapp 5=xtoksapp 6=gtokspre

7=xtokspre
1 104 advance 0 0 0=advance
1 105 multiply 0 0 0=multiply
1 106 divide 0 0 0=divide
1 107 prefix 0 2 0=global 1=protected 2=frozen
1 108 let 0 9 0=glet 1=let 2=futurelet 3=futuredef 4=letcharcode 5=letfrozen 6=unletfrozen

7=letprotected 8=unletprotected 9=letdatacode
1 109 shorthand_def 0 10 0=chardef 1=mathchardef 2=Umathchardef 3=Umathcharnumdef 4=countdef 5=at-

tributedef 6=dimendef 7=skipdef 8=muskipdef 9=toksdef 10=luadef
1 110 read_to_cs 0 1 0=read 1=readline
1 111 def 0 3 0=def 1=gdef 2=edef 3=xdef
1 112 set_box 0 0 0=setbox
1 113 hyph_data 0 7 0=hyphenation 1=patterns 2=prehyphenchar 3=posthyphenchar 4=preexhyphenchar

5=postexhyphenchar 6=hyphenationmin 7=hjcode
1 114 set_interaction 0 3 0=batchmode 1=nonstopmode 2=scrollmode 3=errorstopmode
1 115 set_font_id 0 0 0=setfontid

Tokens 88

1 116 undefined_cs 0 0 0=<unavailable>
1 117 expand_after 0 9 0=expandafter 1=unless 2=futureexpand 3=futureexpandis 4=futureexpandisap

5=expandafterspaces 6=expandafterpars 7=expandtoken 8=expandcstoken 9=ex-
pand

1 118 no_expand 0 0 0=noexpand
1 119 input 0 3 0=input 1=endinput 2=scantokens 3=scantextokens
5 120 lua_expandable_call 0 0x1FFFFF
5 121 lua_local_call 0 0x1FFFFF
1 122 begin_local 0 0 0=beginlocalcontrol
1 123 if_test 2 48 2=fi 3=else 4=or 5=orelse 6=if 7=ifcat 8=ifabsnum 9=ifnum 10=ifabsdim 11=ifdim

12=ifodd 13=ifvmode 14=ifhmode 15=ifmmode 16=ifinner 17=ifvoid 18=ifh-
box 19=ifvbox 20=iftok 21=ifcstok 22=ifx 23=iftrue 24=iffalse 25=ifchknum
26=ifnumval 27=ifcmpnum 28=ifchkdim 29=ifdimval 30=ifcmpdim 31=ifcase
32=ifdefined 33=ifcsname 34=ifincsname 35=iffontchar 36=ifcondition 37=ifeof
38=iffrozen 39=ifprotected 40=ifusercmd 41=ifempty 42=ifboolean 43=ifmathpa-
rameter 44=ifmathstyle 45=ifarguments 46=ifhastok 47=ifhastoks 48=ifhasxtoks

1 124 cs_name 0 2 0=csname 1=lastnamedcs 2=begincsname
1 125 convert 0 16 0=number 1=directlua 2=luafunction 3=luabytecode 4=expanded 5=immediateas-

signment 6=immediateassigned 7=string 8=csstring 9=romannumeral 10=meaning
11=Uchar 12=luaescapestring 13=fontname 14=jobname 15=formatname 16=lua-
texbanner

1 126 the 0 3 0=the 1=thewithoutunit 2=detokenize 3=unexpanded
1 127 top_bot_mark 0 9 0=topmark 1=firstmark 2=botmark 3=splitfirstmark 4=splitbotmark 5=topmarks

6=firstmarks 7=botmarks 8=splitfirstmarks 9=splitbotmarks
7 128 call
7 129 protected_call
7 130 frozen_call
7 131 frozen_protected_call
7 132 frozen_cs_end_template
7 133 frozen_cs_dont_expand
7 134 internal_glue_ref
7 135 register_glue_ref
7 136 internal_mu_glue_ref
7 137 register_mu_glue_ref
7 138 specification_ref
7 139 box_ref

89 Tokens

Keywords 90

14 Keywords

Someprimitives in TEX can take one ormore optional keywords and/or keywords followedby one ormore
values. In traditionalTEX it concernsahandful of primitives, inpdfTEX there areplenty of backend related
primitives, LuaTEX introduced optional keywords to somemath constructs and attributes to boxes, while
LuaMetaTEX adds some more too. The keyword scanner in TEX is kind of special. Keywords are used in
cases like:

\hbox spread 10cm {...}
\advance\scratchcounter by 10
\vrule width 3cm height 1ex

Sometimes there are multiple keywords, as with rules, in which case you can imagine use cases like:

\vrule width 3cm depth 1ex width 10cm depth 0ex height 1ex\relax

Here we add a \relax to end the scanning. If we don’t do that and the rule specification is followed by
arbitrary (read: unpredictable) text, the next word can as well be valid keyword and when followed by a
dimensions (unlikely) it will happily take that as directive or when not followed by a dimension an error
messagewill showup. Sometimes the scanning ismore restricted, like with gluewhere the optionalplus
and minus are to come in that order, but whenmissing, again a word from the text can be picked up if one
doesn’t explicitly ends with a \relax or some other not relevant token.

\scratchskip = 10pt plus 10pt minus 10pt % okay
\scratchskip = 10pt plus 10pt % okay
\scratchskip = 10pt minus 10pt % okay
\scratchskip = 10pt minus 10pt plus 10pt % typesets "plus 10pt"
\scratchskip = 10pt plus whatever % an error

The scanner is case insensitive, so the following specifications are all valid:

\hbox To 10cm {To}
\hbox TO 10cm {TO}
\hbox tO 10cm {tO}
\hbox to 10cm {to}

It happens that keywords are always simple english words so the engine uses a cheap check deep down,
just offsetting to uppercase, but of course that will not work for arbitrary utf (as used in LuaTEX) and it’s
also unrelated to the upper- and lowercase codes as TEX knows them.

The above lines scan for the keyword to and after that for a dimension. Where keyword scanning is case
tolerant, dimension scanning is period tolerant:

\hbox to 10cm {10cm}
\hbox to 10.0cm {10.0cm}
\hbox to .0cm {.0cm}
\hbox to .cm {.cm}
\hbox to 10.cm {10.cm}

These are all valid and according to the specification; even the single period one is okay, although it looks
funny. It would not be hard to intercept that but I guess that when TEX was written anything that could
harmperformance was taken into account and the above is quite okay. One can even argue for cases like:

91 Keywords

\hbox to \first.\second cm {.cm}

Here \first and/or \second can be empty. Most users won’t notice these side effects of scanning num-
bers anyway.

The reason for even spending words on keywords is the following. Optional keyword scanning is kind of
costly, not somuchnow, butmore sodecades ago. For instance, in thefirst line below, there is nokeyword.
The scanner sees a 1 and it not being a keyword, pushes that character back in the input.

\advance\scratchcounter 10
\advance\scratchcounter by 10

In the case of:

\scratchskip 10pt plux

It has to push back the four scanned tokens plux. Now, in the engine there are lots of cases where looka-
headhappensandwhenacondition isnot satisfied, the just read token ispushedback. Incidentally, when
pickingup thenext token triggered someexpansion, it’s not the original next token that gets pushedback,
but the first token seen at the expansion. Pushing back tokens is not that inefficient, although it involves
allocating a token andpushing and popping input stacks (we’re talking of amix of reading fromfile, token
memory, Lua prints, etc) but it always takes a little time andmemory. In LuaTEX there aremore keywords
for boxes, and there we have loops too: in a box specification one ormore optional attributes are scanned
before the optional to or spread, so again there can be push back when nomore attr are seen.

\hbox attr 1 98 attr 2 99 to 1cm{...}

In LuaMetaTEX there is even more optional keyword scanning, but we leave that for now and just show
one example:

\hbox spread 10em {\hss
\hbox orientation 0 yoffset 1mm to 2em {up}\hss
\hbox to 2em {here}\hss
\hbox orientation 0 xoffset -1mm to 2em {down}\hss

}

Although one cannot mess to much with these low level scanners there was room for some optimization
so the penalty we pay for more keyword scanning in LuaMetaTEX is not that high. In fact, I often manage
to compensate adding features that have a possible performance hit with some gain elsewhere.

Anyway, it will be no surprise that there can be interesting side effects to keyword scanning. For instance,
using the two character keyword by in an advance can be more efficient because nothing needs to be
pushed back. The same is true for the sometimes optional equal:

\scratchskip = 10pt

Similar impacts on efficiency can be found in the way the end of a number is seen, basically anything not
resolving to a number (or digit).

\scratchcounter 10% space not seen, ends \cs
\scratchcounter =10% no push back of optional =
\scratchcounter = 10% extra optional space gobble
\scratchcounter = 10 % efficient ending of number scanning

Keywords 92

\scratchcounter = 10\relax % depending on engine less efficient

In the above examples scanning the number involves: skipping over spaces, checking for an optional
equal, skipping over spaces, scanning for a sign, checking for an optional octal or hexadecimal trigger
(single or double quote), scanning the number till a non digit is seen. In the case of dimensions there is
fraction scanning as well as unit scanning too.

In any case, the equal is optional and kind of a keyword. Having an equal can be more efficient then
not having one, again due to push back in case of no equal being seen, In the process spaces have been
skipped, so add to the overhead the scanning for optional spaces. In LuaMetaTEX all that has been op-
timized a bit. By the way, in dimension scanning pt is actually a keyword and as there are several di-
mensions possible quite some push back can happen there, but we scan for the most likely candidates
first.

All that said, we’re now ready for a surprise. The keyword scanner gets a string that it will test for, sayto in
case of a box specification. It then will fetch tokens fromwhatever provides the input. A token encodes a
so called command and a character and can be related to a control sequence. For instance, the character
t becomes a letter command with related value 116. So, we have three properties: the command code,
the character code and the control sequence code. Now, instead of checking if the command code is a
letter or other character (two checks) a fast check happens for the control sequence code being zero. If
that is the case, the character code is compared. In practice that works out well because the characters
that make up a keyword are in the range 65 upto 90 and 97 upto 122, and all other character codes are
either below that (the ones that relate to primitives where the character code is actually a sub command
of a limited range) or much larger numbers that for instance indicate an entry in some array, where the
first useful index is above the mentioned ranges.

The surprise is in the fact that there is no checking for letters or other characters, so this is why the next
code will work too:13

\catcode `O= 1 \hbox tO 10cm {...} % { begingroup
\catcode `O= 2 \hbox tO 10cm {...} % } endgroup
\catcode `O= 3 \hbox tO 10cm {...} % $ mathshift
\catcode `O= 4 \hbox tO 10cm {...} % & alignment
\catcode `O= 6 \hbox tO 10cm {...} % # parameter
\catcode `O= 7 \hbox tO 10cm {...} % ^ superscript
\catcode `O= 8 \hbox tO 10cm {...} % _ subscript
\catcode `O=11 \hbox tO 10cm {...} % letter
\catcode `O=12 \hbox tO 10cm {...} % other

In the first line, whenwewould use change the catcode of T and use that one it would kind of fails because
they TEX sees a begin group character and starts the group, but as a second character in a keyword it’s
okay because TEX will not look at the category code.

Of course only the cases 11 and 12make sense because one can imagine that messing with the category
codes of regular letters this way will definitely give problems with processing the text. In a case like:

{\catcode `o=3 \hbox to 10cm {oeps}} % $ mathshift {oeps}
{\catcode `O=3 \hbox to 10cm {Oeps}} % $ mathshift {$eps}

we have several issues: the primitive control sequence \hbox has an o so TEX will stop after \hb which
can be undefined or a valid macro and what happens next is hard to predict. Going uppercase will work

13 No longer in LuaMetaTEX where we do a bit more robust check.

93 Keywords

but then the content of the box is bad because there the O enters math.

{\catcode `O=3 \hbox tO 10cm {Oeps Oeps}} % {$eps $eps}

This will work because there are now two O in the box so we have balanced inline math triggers. But how
does one explain that to a user, who probably doesn’t understand where an error message comes from
in the first place. Anyway, this kind of tolerance is still not pretty so in LuaMetaTEX we now check for the
command code and stick to letters and other characters. On today’s machines (and even on my by now
ancient workhorse) the performance hit can be neglected. Actually, by intercepting the weird cases we
also avoid an unnecessary case check when we fall through the zero cs test. Of course that also means
that the abovementioned category code trickery doesn’twork anymore: only letters andother characters
are now valid in keyword scanning. Now, it can be that somemacro programmer actually used those side
effects but apart from some macro hacker being hurt because no longer mastering those details can be
showed off, it is users that we care more for, don’t we?

Now get me right, the above mentioning of performance of keyword and equal scanning is not that rele-
vant in practice. But for the record, here are some timings on a laptop with a i7-3849QM processor using
MingW binaries on a 64 bit MS Windows 10. The times are the averages of five times a million such as-
signments and advancements:

one million times terminal LuaMetaTEX LuaTEX

\advance \scratchcounter 1 space 0.068 0.085
\advance \scratchcounter 1 \relax 0.135 0.149
\advance \scratchcounter by 1 space 0.087 0.099
\advance \scratchcounter by 1 \relax 0.155 0.161
\scratchcounter 1 space 0.057 0.096
\scratchcounter 1 \relax 0.125 0.151
\scratchcounter =1 space 0.063 0.080
\scratchcounter =1 \relax 0.131 0.138

We differentiate between using a space as terminal or a \relax. The later is a bit less efficient because
more code is involved in resolving the meaning of that control sequence (which eventually boils down to
nothing) but nevertheless, these are not timings that one can loose sleep over, especially when the rest of
a decent TEX run is taken into account. And yes, LuaMetaTEX is a bit faster here than LuaTEX, but I would
be disappointed if that weren’t the case.

