
T
T
T
T

E
E
E
E

C
C
C
C

H
H
H
H

N
N
N
N

O
O
O
O

T
T
T
T

E
E
E
E

Bounding Boxes

H
a
n
s
H
a
g
e
n



1

For most ConTEXt users, placement of graphics is something that “just happens” to

work. In their document source you may find commands like:

\placefigure
{An example figure.}
{\externalfigure[hacker.jpg][height=3cm]}

This results in a placement like:

Figure 1 An example figure.

A graphic —as in this example— can be a bitmap, or a vector drawing, or the

result from embedded METAPOST code. The previous example demonstrates that

ConTEXt handles the spacing around the graphic.

Figure 2 An example

figure with frame.

In the framed example figure, the frame matches the natural size

of the graphic and is drawn on top of the graphic. As you can

see, no graphic content falls outside the natural bounds of the

graphics. The rectangular box that determines the dimensions

of a graphic is called the bounding box (although a graphic may

have any shape). The bounding box is always a rectangle and its

position in a carthesian system and its size is determined by two coordinates: the

lower left corner and the upper right corner.

When dealing with vector graphics, the natural boundaries are often not as promi-

nent as with bitmaps, but we still have a boundingbox. Although in the example

graphic the boundingbox is tight you often cannot trust this boundingbox to be

tight especially when such a graphic is made outside our control,.



2

Figure 3 A vector graphic.

There can be good reasons to have a boundingbox that is not tight. To mention a

few:

• the graphic is part of a series, and the sizes and scales of the individual graphics

need to match

• a graphic needs a displacement from its natural position (e.g. part of a graphic

falls behind a text)

• a graphic needs to bleed (i.e. part falls of a page in order to compensate for cut

errors

Now, instead of messing around with the boundingbox, one can best see to what

extend the typesetting engine can handle such anomalities. In most cases ConTEXt

permits you to mess around with graphic placement and therefore we strongly rec-

ommend to stick to tight boundingboxes when possible, especially when you want

to reuse graphics.

The bad news is that due to the fact that desk top publishing applications use a dif-

ferent approach (read: graphics are placed manually), most graphics that are made

by non TEX users, have wrong bounding boxes. Even worse, there are applications

that provide the wrong and/or inaccurate dimensions, and (believe it or not) in

many cases we have to rebound third party graphics before they can be used.

Real bad situations can occur when a graphic is not positioned at all. In a drawing

program one normally sets up a canvas (say a sheet of letter paper) and starts

drawing on it. When it’s time to save the graphic, well, the graphic is just saved.

Clipping or bounding then takes place in the desk top publishing application. In

the worst case, the graphic is positioned outside the paper, and it may become real

messy when scratch bits and pieces are still there and positioned somewhere out of

sight (that is: they will show up when the bounding box is wrong).

This phenomena is obscured by the fact that programs that deal with such graphics

can recognize these flaws and compensate for them, thereby obscuring bugs and

flaws. In that case it may be hard to communicate such a bug to the designer,

simply because he or she may lack the technical knowledge and quite certainly is

not going to look inside the PostScript or pdf file.

In one of our projects one of the graphics is generated by ConTEXt, by TEX and

METAPOST in tandem. This makes sense because each chapter in a huge series of



3

books has one of these graphics and making them by hand is no fun, especially since

we’re talking of hundreds of chapters and thousands of graphics.

In the introduction of a similar graphic is included, but that one is not generated

by the typesetting engine, but made by a third party. We will use that graphic to

illustrate the bounding box problem.

When we include the original graphic as it is, we get the following result. To start

with, the graphic is not properly centered horizontally. In a dtp system this is

handled by manual shifting.

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 4

We’ve put a frame around the graph. That way you get a pretty good impression

of the spacing problems.

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 5

There is not only a horizontal spacing problem, but also a vertical one. It will be

clear that compensating such margins can only be done automatically by looking

into the graphic (brute force).

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 6

Figure 6 shows the same graphic scaled to the text width. As you see, such a request

is not honoured in the visual sense.

What on the left may look like a small margin is again part of the graphic. Never

put such margins in a graphic: ConTEXt can do that for you if needed.

We’ve used Acrobat to crop the graphic and this time we get a properly centered

graphic.



4

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 7

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 8

When graphics have text like this, it makes sense to let the bottom bounding line

be the baseline of the text, and the top bounding line the proper strut height (for

not ConTEXt users: a strut is an invisible character with only height and depth,

totaling to the lineheight). In practice this wish is hard to (explain and therefore)

honor.

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 9

This time we can properly scale to the line width and even now we get inaccuracies.

It would make sense to make the right boundingbox align with the right boundary

of the boxes and so let the text stick slightly out of that box.

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 10

It would have made sense to make this graphic in ConTEXt as well, if only because

we then have more control over the boundingbox and so let the text stick out.



5

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 11

Here is the alternative that is used in each chapter introduction. As said, this

variant is generated by METAPOST based on an xml database and a chapter specific

specification. 1 1

1 1

303.01 303.02

1 2 3 4

303.03

1 2 3

303.04

1 2 3 4 5 6 7

Figure 12

This time there is no difference between the framed variant and the frameless one.

The frame is obscured by the frame that is part of the graphic itself.1 1

1 1

303.01 303.02

1 2 3 4

303.03

1 2 3

303.04

1 2 3 4 5 6 7

Figure 13

This alternative is suited for scaling to the width of a page. In practice this will

not happen. Some instances of the graphic are way to wide for the page, and are

clipped in a sensible way.
1 1

1 1

303.01 303.02

1 2 3 4

303.03

1 2 3

303.04

1 2 3 4 5 6 7
Figure 14

Again there is no difference when we add a frame. No margins are part of the

graphic. This time we have no text outside the boxes, but even then we would have

had proper boundingboxes.
1 1

1 1

303.01 303.02

1 2 3 4

303.03

1 2 3

303.04

1 2 3 4 5 6 7
Figure 15

In this particular project, the graphics can be quite large, especially because nearly

all of them are high resolution bitmaps. Each book has 150 to 250 pages and



6

the resulting filesize is between 500 and 1000 MBytes. The typesetting is done

automatically on a dedicated ConTEXt server, is based on xml input, and uses the

eXaMpLe framework to control the typesetting process over inter- and intranet.

To keep transmission of files within reasonable time, intermediate versions use low

resolution graphics. These are automatically generated when new graphics are post-

ed to the server. The annotated graphic shown previously also entered this down-

sampling process and the result showed up as white area.

Why was this? We use our pstopdf script (which is part of the ConTEXt distribution)

to feed the graphic to GhostScript. This script filters all kind of disturbing fuzzy

and application specific code from vector graphic, but only when they are in Post-

Script format. A pdf graphic is fed to GhostScript asis. It took a while to figure

out why this graphic was so troublesome and only looking into the pdf file helped

us out: negative paper is used. In such situations the pdf interpreter has to take

the crop and art box into account and in this graphic these are slightly confusing.

This can best be demonstrated with a graphic, see figure 18. The mediabox (think

of the paper) has negative dimensions, and this confuses GhostScript too much. I’m

not sure if paper extending in quadrant 2, 3 and 4 makes sense, but it is definitely

weird. In this respect there is a difference between placed pdf (like eps) and an

independent page. In my opinion it’s best not to gamble and make sure that the

graphic ends up in the first quadrant. Whether we have to do with a bug in the

graphic or in GhostScript is subjected of discussion.

After this experience, we decided to extend the XPDF companion program PDFInfo

to report the boxes (a similar extension is part of future versions of this program).

The problematic graphic resulted in the following report. Note that the graphic is

placed on negative paper (media).

Creator Adobe Illustrator 10
Producer Adobe PDF library 5.00
CreationDate 11/23/03 14:08:49
ModDate 12/23/03 16:37:54
Tagged no
Pages 1
Encrypted no
Page size 327.535 x 69.0819 pts
Media box [-94.5 -654 500.5 188]
Crop box [-5.12834 -47.2649 322.407 21.817]
Bleed box [-5.12834 -47.2649 322.407 21.817]
Trim box [-5.12834 -47.2649 322.407 21.817]
Art box [87.4258 607.25 399.235 188]
File size 59115 bytes
Optimized no
PDF version 1.5



7

In this case the graphic is made in Adobe Illustrator, and since this is a com-

plex and highly configurable program, the box info shown here demonstrates that

you’d better know what you’re doing when you export a graphics as placeable pdf.

Since nowadays pdf is also Illustrators file format, it means that you cannot simply

consider the stored graphic to be placeable. The data file contains editor specif-

ic information, so, before you use the graphic in other applications (especially in

applications of other vendors), you may need to prepare the graphic for placement.

Another aspect to keep in mind is that when a graphic is not accurate, it may have

consequences for the boundingbox as well. In the dtp variant, the small square is

slightly too large.

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 16 Not all vector graphics are accurate (dtp variant, 1).

If this happens at one of the edges, it does influence the boundingbox. If you are

a regular TEX user, you probably are aware of the fact that TEX is pretty precise

(which by the way is no guarantee for pretty documents). Even small inaccuracies

in third party graphics then may give you an uneasy feeling when looking at the

result.

303.01

1 3 421

303.02 303.03

2 3 11

303.04

32 4 5 76

deelkwalificatie eindterm

subeindterm

Figure 17 Not all vector graphics are accurate (dtp variant, 2).

Such inaccuracies result in unsufficient snapping in drawing programs, in no too

precise coordinates in the pdf (or eps) file, in wrong rounding, or most probably, in

the author of the graphic. METAPOST drawings are (if you do it right) extremely

precise, but this program is suited for only a particular class of graphics. It’s

symbolic definition of graphics (e.g. the use of named coordinates) also kind of

prevents snapping problems. Whatever program you use for drawing the graphics:

you need an eye for detail. Also, you’d better make sure that you know how (and

in what application) the graphic is to be (re)used.



8

mediabox

(-94.5,-654)

(500.5,188)

cropbox
(-5.12834,-47.26486)

(322.40674,21.81702)

artbox

(87.4258,188)

(399.23538,607.25)

Figure 18 The boxes that define the location and size of

the graphic.


