
LMX
TEMPLATES

H
A
N
S
H
A
G
E
N



1

Contents

1 Introduction 1

2 How it works 1

1 Introduction

This manual is not finished yet. The main reason is that what is described here is an afternoon ex

periment resulting in a dozen lines of Lua glue code that builds upon an already existing mechanism.

When users like this, I will extend the basic lmx handler to suit the TEX end better. There will also be

also support for cache based and in--document templates.)

The acronym lmx stands for document that are a mix of Lua and xml and is just the three letters xml

reversed. Such documents showed up pretty soon in MkIV while I was exploring ways to present

debugging and error information to users using xml. As a consequence this is one of the older mech

anisms available, although I doubt if users start looking for it when they start using ConTEXt.

Anyhow, because we also use lmx for populating web pages, at some point I wondered if using the

same approach for TEX files made sense. I'm still not sure about it but who knows where this ends

up. Currently code is shared but in the future we might end up with a variant that adds some more

flexibility.

2 How it works

First of all, using this mechanism involves yet another kind of mk, so now we have:

mkii The old version of ConTEXt, using pdfTEX,XƎTEX, etc.

mkiv The new version of ConTEXt, using LuaTEX.

mkvi Similar to MkIV but with named macro parameters.

mkix A MkIV file mixed with Lua wrapped in xml processing instructions.

mkxi Similar to MkIX but with named macro parameters.

The nice thing about sticking to wrapping in angle brackets is that it plays nice with syntax highlight

ing. Before we show an example of such a mix, we first point out that loading (and thereby conversion)

happens automatically. A mkix or mkxi file is just a regular ConTEXt file. In the test suite there is a

demo file that can be included like this:

\input lmxlike-001.mkxi

This file is loaded and converted on the fly. No caching takes place, but in due time we can use

the cache built into the lmx handlers if needed. The template itself can be fed with variables in the

document namespace:

\starttext

\startluacode

document.variables.text = "set"

\stopluacode



2

\input lmxlike-001.mkxi

\stoptext

Instead of a special suffix, you can also force conversion with the macros directive:

% macros=mkix

Part of the mentioned looks as follows:

\bTABLE

<?lua for i=1,40 do ?>

\bTR

<?lua for j=1,5 do ?>

\bTD

cell (<?lua inject(i) ?>,<?lua inject(j)?>)

is <?lua inject(variables.text or "unset") ?>

\eTD

<?lua end ?>

\eTR

<?lua end ?>

\eTABLE

The <?lua ... ?> command is conceptually different from (say) \ctxlua in the sense that the later

executes some Lua code at that spot, while in a template a Lua function is constructed out of the whole

that gets executed. In fact, we use Lua to construct an input file.

For the moment we only mention the predefined inject command. There are some more but they

makemore sense for xml and html and in due time this will be decoupled so that we can have dedicated

helpers. Even the xml and html part is somewhat in flux.

The previous example can of course also be done differently. It's a matter of taste and usage what

method gets used:

\startluacode

context.bTABLE()

for i=1,40 do

context.bTR()

for j=1,5 do

context.bTD()

context("cell (%s,%s) is %s",i,j,document.variables.text or "unset")

context.eTD()

end

context.eTR()

end

context.eTABLE()

\stopluacode

The difference between a MkIX and MkXI file is the same as between a MkIV and MkVI file: the way

macros can be defined:

\def\testmacro#one#two{[#one,#two]}



3

\testmacro{1}{2}

\testmacro{one}{two}

\testmacro{second}{first}

In practice one will seldom need macro definitions in a template file but the possibility is provided.

Colofon

author Hans Hagen, PRAGMA ADE, Hasselt NL

version July 29, 2021

website www.pragma-ade.nl – www.contextgarden.net

copyright c b a n


