
TE
XM

FS
TA

RT
H

an
s

H
ag

en
–

20
03

/2
00

6

Introduction
This manual is about a small (RUBY) script that can be used to run a script or open a document which
is located somewhere in the texmf tree. This scripts evolved out of earlier experiments and is related
to scripts and programs like runperl, runruby and irun.

One of the main reasons for texmfstart to exist is that it enables us to be downward compatible
when using a TEX based environment. TEX itself is pretty stable, but this is not true for the whole
collection of files that comes with a distribution and the way they are organized. We will see some
other reasons for using this script as well.

We can also use this script for lanching applications that need access to resources in the TEX tree but
that lack the features to locate them.

The script has a few dependencies on libraries. This means that relocating the script to a bin path may
give problems. One can make a self--contained version by saying:

texmfstart --selfmerge

One can undo this with the --selfclean option. Normally users don’t have to worry about this
because in the CONTEXT distribution the merged version is shipped. A MS WINDOWS (pseudo) binary
can be made with exerb or one can simply associate the .rb suffix with the RUBY program.

FTYPE RubyScript=c:\data\system\ruby\bin\ruby.exe %%1 %%*

ASSOC .rb=RubyScript
ASSOC .rbw=RubyScript

On UNIX one can make a copy without suffix:

cp texmfstart.rb /path/to/bin/texmfstart
chmod +x texmfstart

Alternative approaches have been discussed on the CONTEXT and TEXLive mailing lists and can be
found in their archives.

Launching programs

The primary usage of texmfstart is to launch programs and scripts. We can start the texexec
PERL script with:

texmfstart texexec.pl --pdf somefile

We can also start the pstopdf RUBY script:

texmfstart pstopdf.rb --method=3 cow.eps

However, we can omit the suffix:

texmfstart texexec --pdf somefile
texmfstart pstopdf --method=3 cow.eps

2

The suffixless method is slower unless the scripts are known. For familiar CONTEXT scripts it’s best
not to use the suffix since this permits us to change the scripting language. CONTEXT related scripts are
known. Because in the meantime texexec has become a RUBY script, users who use the suffixless
method automatically will get the right version.

You can also say:

texmfstart --file=pstopdf --method=3 cow.eps

When locating a file to run, several methods are applied, one being kpsewhich. You can control the
path searching by providing a program space, which by default happens to be context.

texmfstart --program=context --file=pstopdf --method=3 cow.eps

The general pattern is:

texmfstart switches filename arguments

Here switches control texmfstart’s behaviour, and arguments are passed to the program iden-
tified by filename.

Sometimes the operating system will spoil our little game of passing arguments. In the following case
we want the output of texexec to be written to a log file. By using quotes, we can pass the redirection
without problems.

texmfstart texexec "somefile.tex > whatever.log"

Generating stubs

One of the reasons for writing texmfstart is that it permits us to write upward compatible scripts
(batch files), so instead of

texexec --pdf somefile
texexec --pdf anotherfile

We prefer to use:

texmfstart texexec --pdf somefile
texmfstart texexec --pdf anotherfile

Instead of using texmfstart directly you can also use it in a stub file. For MS WINDOWS such a file
looks like:

@echo off
texmfstart texexec %*

In this case, the file itself is named texexec.cmd. Now, given that no new functionality of
texmfstart itself is needed, one will automatically use the version of texexec that is present
in the (latest) installed CONTEXT tree.

3

It is possible to generate stubs automatically. You can provide a path where the stub will be written.
This permits tricks like the following. Say that on a CDROM we have the following structure:

tex/texmf-mswin/bin/texexec.bat
tex/texmf-linux/bin/texexec
tex/texmf-local/scripts/context/ruby/texexec.rb

If we are on the main tex path, we can run texmfstart as follows:

texmfstart --make --windows --stubpath=tex/texmf-mswin/bin \
../../texmf-local/scripts/context/ruby/texexec.rb

texmfstart --make --unix --stubpath=tex/texmf-linux/bin \
../../texmf-local/scripts/context/ruby/texexec.rb

This will generate start up scripts that point directly to the PERL script. Such a link may fail when files
get relocated. In that case you can use the --indirect directive, which will force the texmfstart
into the stub file.

texmfstart --make --windows --indirect --stubpath=tex/texmf-mswin/bin \
../../texmf-local/scripts/context/ruby/texexec.rb

texmfstart --make --unix --indirect --stubpath=tex/texmf-linux/bin \
../../texmf-local/scripts/context/ruby/texexec.rb

However, the prefered way and most simple way to generate the stubs for the scripts that come with
CONTEXT is:

texmfstart --make all

This will generate stubs suitable for the current operating system in the current path.

Documents

You can use texmfstart to open a document.

texmfstart showcase.pdf

This will open the document showcase.pdf, when found. The chance is minimal that such a
document can be located by kpsewhich. In that case, texmfstart will search the tree itself.

Given that it is supported on your platform, you can also open a PDF file on a given page.

texmfstart --page=2 showcase.pdf

On MS WINDOWS the following command will open the PDF file in a web browser. This is needed
when you want support for form submission.

texmfstart --browser examplap.pdf

4

Search strategy

In a first attempt, kpsewhich will be used to locate a file. When kpsewhich cannot locate the file,
the following environment variables will be used:

RUBYINPUTS ruby scripts with suffix rb
PERLINPUTS perl scripts with suffix pl
PYTHONINPUTS python scripts with suffix py
JAVAINPUTS java archives with suffix jar
PDFINPUTS pdf documents with suffix pdf

It using them fails as well, the whole tree is searched, which will take some time.

When a file found, its location is remembered and passed on to nested runs. So, in general, a nested
run will start faster.

Directives
The script accepts a few directives. Some are rather general:

--verbose report some status and progress information
--arguments an alternative for providing the arguments to be passed
--clear don’t pass info about locations to child processes

Directives that concern starting an application are:

--program=str the program space where kpsewhich will search
--locate report the call as it should happen (no newline)
--report report the call as it should happen (simulated)
--browser start the document in a web browser
--file an alternative for providing the file
--direct run a program without searching for it’s location
--execute use RUBY’s ’exec’ instead of ’system’
--batch not yet implemented

You can create startup scripts by providing one of the following switches in combination with a
filename.

--make create a start script or batch file for the given program
--windows when making a startup file, create a windows batch file
--linux when making a startup file, create a unix script
--stubpath destination of the startup file
--indirect always use texmfstart in a stub file

Some directives can be accompanied by specifications, like:

5

--page=n open the document at this page
--path=str change from the current path to the given path
--before=str not yet implemented
--after=str not yet implemented
--tree=str use the given TEX tree
--autotree automatically determine the TEX tree to use
--environment=str use the given tmf environment file

Conditional directives are:

--iftouched=str,str only run when the given files have different time stamps
--ifchanged=str only run when the given file has changed (md5 check)

Special features:

--showenv show the environment variables known at runtime
--edit open the given file in an editor

In addition, there are prefixes for filenames:

bin:filename expanded name, based on PATH environment variable
kpse:filename expanded name, based on kpsewhich result
rel:filename expanded name, backtracking on current path (./..)
env:name expanded name, based on environment variable name
path:filename pathpart of filename as located by kpsewhich

Performance
The performance of the indirect call is of course less than a direct call. You can gain some time by
setting the environment variables or by using a small TEX tree.

The script tries to be clever. First it tries to honor a given path, and if that fails it will strip the path
part and look on the current path. When this fails, it will consult the environment variables. Then it
will use kpsewhich and when that fails as well, it will start searching the TEX trees. This may take a
while, especially when you have a complete tree, like the one on TEX Live.1

If you want, you can use the built in kpsewhich functionality (written in RUBY) by setting the
environment variable KPSEFAST to yes. The built in handler is a bit faster and maintains its own file
database. Such a database is generated with:

tmftools --reload

On my computer I use multiple trees parallel to the latest TEX Live tree. This results in a not that intuitively and predictable1

search process. The cover of this manual reflects state of those trees.

6

Using prefixes
You can also use texmfstart to launch other programs that need files in one of the TEX trees:

texmfstart --direct xsltproc kpse:somescript.xsl somefile.xml

or shorter:

texmfstart bin:xsltproc kpse:somescript.xsl somefile.xml

In both cases somescript.xsl will be resolved and in the second case bin: will be stripped. The
--direct switch and bin: prefix tell texmfstart not to search for the program, but to assume that
it is a binary. The kpse: prefix also works for previously mentioned usage.

A convenient way to edit your local context system setup file is the following; we don’t need to go to
the path where the file resides.

texmfstart bin:scite kpse:cont-sys.tex

Because editing is happening a lot, you can also say:

texmfstart --edit kpse:cont-sys.tex

You can set the environment variable TEXMFSTART_EDITOR to your favourite editor.

Conditional processing
A bit obscure feature is triggered with --iftouched, for instance:

texmfstart --iftouched=normal.pdf,lowres.pdf \
downsample.rb --verylow normal.pdf lowres.pdf

Here, downsample.rb is only executed when normal.pdf and lowres.pdf have a different
modification time. After execution, the times are synchronized. This feature is rather handy when you
want to minimize runtime. We use it in the resource library tools.

texmfstart --iftouched=foo.bar,bar.foo convert_foo_to_bar.rb

A similar option is ifchanged:

texmfstart --ifchanged=whatever.mp texexec --mpgraphic whatever.mp

This time we look at the MD5 checksum, when the sum is changed, texexec will be run, otherwise
we continue.

TEX trees
There are a few more handy features built in. The reason for putting those into this launching program
is that the sooner they are executed, the less runtime is needed later in the process.

7

Imagine that you have installed your tree on a network attached storage device. In that case you can
say:

texmfstart --tree=//nas-1/tex texexec --pdf yourfile

There should be a file setuptex.tmf in the root of the tree. An example of such a file is part of the
CONTEXT distribution (minimal trees). This feature permits you to have several trees alongside and
run specific ones. You can also specify additional environments, using --environment.

Such an environment file is platform independent and looks as follows. The %VAR% variables will be
replaced by their meaning, while the $VAR variables are left untouched. The = sets a value, while >
and < prepend and append the given value to the current value.

author: Hans Hagen - PRAGMA ADE - Hasselt NL - www.pragma-ade.com
#
usage: texmfstart --tree=f:/minimal/tex ...
#
this assumes that calling script sets TEXPATH without a trailing
slash; %VARNAME% expands to the environment variable, $VARNAME
is left untouched; we also assume that TEXOS is set.

TEXMFMAIN = %TEXPATH%/texmf
TEXMFLOCAL = %TEXPATH%/texmf-local
TEXMFFONTS = %TEXPATH%/texmf-fonts
TEXMFEXTRA = %TEXPATH%/texmf-extra
TEXMFPROJECT = %TEXPATH%/texmf-project
VARTEXMF = %TMP%/texmf-var
HOMETEXMF =

TEXMFOS = %TEXPATH%/%TEXOS%
OSFONTDIR = %SYSTEMROOT%/fonts

TEXMFCNF = %TEXPATH%/texmf{-local,}/web2c
TEXMF = {$TEXMFOS,$TEXMFPROJECT,$TEXMFFONTS,

$TEXMFLOCAL,$TEXMFEXTRA,!!$TEXMFMAIN}
TEXMFDBS = $TEXMF

TEXFORMATS = %TEXMFOS%/web2c/{$engine,}
MPMEMS = %TEXFORMATS%
TEXPOOL = %TEXFORMATS%
MPPOOL = %TEXPOOL%

PATH > %TEXMFOS%/bin
PATH > %TEXMFLOCAL%/scripts/perl/context
PATH > %TEXMFLOCAL%/scripts/ruby/context

8

RUBYLIB > %TEXMFLOCAL%/scripts/ruby/context

TEXINPUTS =
MPINPUTS =
MFINPUTS =

When you only want to set a variable that has no value yet, you can use an ?. These symbols have
alternatives as well:

= << assign a value to the variable
? ?? only assign a valuehen the variable is unset
< += append a value to the current value of the variable
> =+ prepend a value to the current value of the variable

