
This Way
ConTEXt magazine #1101

July 2011

Project Structure
Hans Hagen

PRAGMA ADE

For a long time already ConTEXt provides a way to organize your document(s) in a
structure that permits processing of components. This mechanism has been upgraded
a bit in MkIV and here we will summarize the status quo.

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

1

#1101 October 12, 2011 This Way 1

A regular document has a simple structure. When we talk about structure here, we
only refer to the overall document structure.

% style specification

\starttext
% the document content

\stoptext

For practical reasons we delay initial font loading till the first \starttext so that
one can overload the defaults. This means that when no bodyfont is specified, and
is not given, there will be hardly any visible output.

An example of a more elaborate structure is the following:

\environment environment-1
\environment environment-2

\startproduct product-1

\component component-1.tex
\component component-2.mkiv
\component component-3.cld

\component component-1
\component component-2

\stopproduct

Here we have a specific product, made up out of components and using a few envi-
ronment files that specify the style. By default we assume tex files, but you can be
specific and use known suffixes. A less abstract example is the following:

\environment my-fonts
\environment my-style
\environment my-abbreviations
\environment my-urls

\startproduct manual

\component titlepage
\component contents

\component chapter-1
\component chapter-2
\component chapter-3

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

2

2 This Way October 12, 2011 #1101

\component index

\stopproduct

You can process components and products independently but be aware that you
won’t get cross document (or chapter) references then.

There is one more level: projects.

\environment my-fonts
\environment my-style
\environment my-abbreviations
\environment my-urls

\startproject documentation

\product manual
\product faqs

\stopproject

This means that we can also define the manual as follows:

\project documentation

\startproduct manual

\component titlepage
\component contents

\component chapter-1
\component chapter-2
\component chapter-3

\component index

\stopproduct

Environments are only loaded once and when you run a component or product that
refers to environments or when environments are picked up from an encapsulating
structure you need to be aware of the order of loading.

The names given after the start command are not that important but the names after
the simple commands refer to filenames, so in the next case there need to be a file
called index.tex:

\component index

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

3

#1101 October 12, 2011 This Way 3

Equally valid is:

\component[index]

Subpaths are also permitted:

\component manual/index

The meaning of the mentioned commands is not frozen but adapts itself to the cur-
rent situation. A file can be processed many times, only once or never. The following
table shows what will happen when:

\component \environment \product \project
\start .. \stopcomponent many once none once
\start .. \stopenvironment none once none none
\start .. \stopproduct many once none once
\start .. \stopproject none once once none
\start .. \stoptext many once none none

When you load an environment or component, you can specify it to be a Lua file by
using the lua or cld suffix. In that case the file will be loaded in the right way. From
the table you can deduce that the following is also valid:

\environment mystyle

\starttext
% the content

\stoptext

combined with:

\startenvironment mystyle
% the definitions

\stoptext

This is about the simplest structure that you can use that still gives a bit of abstraction.

In addition to files in a project structure, you can load predefined modules.

\usemodule[mathml]

or more specific:

\usemodule[x][mathml]

Which limits the lookup to the x namespace. The first match quits the search and
the order of lookups is: mkvi, mkiv, tex, cld, lua. It follows that modules can be
Lua files.

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

4

4 This Way October 12, 2011 #1101

When you use structure in the files you will find an overview in the log file. This
looks as follows:

system > structure > start used structure

used structure > text: product-1
used structure > environment: environment-1
used structure > environment: environment-2
used structure > product: product-1
used structure > component: component-1
used structure > component: component-2
used structure > component: component-1
used structure > component: component-2

system > structure > stop used structure

Some basic logging on the console can be enabled with:

\enabletrackers[system.jobfiles]

A new command pair is the following:

\startdocument[settings]
structured content

\stopdocument

The settings are key/value pairs and the values can be retrieved using:

\documentvariable{key}

You can set before and after parameters and by default these are set up as follows:

\setvariables
[document]
[before=\directsetup{document:start},
after=\directsetup{document:stop}]

You can for instance define these setups to generate a title page (using document
variables) and a colophon page. In the future more functionality might be added.

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

source code of this document

#1101 October 12, 2011 This Way 5

% copyright=pragma-ade readme=readme.pdf licence=cc-by-nc-sa
language=uk

\usemodule[mag-01,abr-02,job-01]

\setvariables
[magazine]
[title={Project Structure},
author=Hans Hagen,
affiliation=PRAGMA ADE,
date=July 2011,
number=1101]

\startbuffer[abstract]
For a long time already \CONTEXT\ provides a way to organize
your document(s) in a structure that permits processing of
components. This mechanism has been upgraded a bit in \MKIV\
and here we will summarize the status quo.

\stopbuffer

\starttext \setups [titlepage] \setups [title]

A regular document has a simple structure. When we talk about
structure here, we only refer to the overall document structure.

\startTEX
% style specification

\starttext
% the document content

\stoptext
\stopTEX

For practical reasons we delay initial font loading till the
first \type {\starttext} so that one can overload the defaults.
This means that when no bodyfont is specified, and {\starttext}
is not given, there will be hardly any visible output.

An example of a more elaborate structure is the following:

% \enabletrackers[context.trace]

\startTEX
\environment environment-1
\environment environment-2

\startproduct product-1

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

source code of this document

6 This Way October 12, 2011 #1101

\component component-1.tex
\component component-2.mkiv
\component component-3.cld

\component component-1
\component component-2

\stopproduct
\stopTEX

Here we have a specific product, made up out of components and
using a few environment files that specify the style. By default
we assume tex files, but you can be specific and use known
suffixes. A less abstract example is the following:

\startTEX
\environment my-fonts
\environment my-style
\environment my-abbreviations
\environment my-urls

\startproduct manual

\component titlepage
\component contents

\component chapter-1
\component chapter-2
\component chapter-3

\component index

\stopproduct
\stopTEX

You can process components and products independently but be
aware
that you won't get cross document (or chapter) references then.

There is one more level: projects.

\startTEX
\environment my-fonts
\environment my-style
\environment my-abbreviations
\environment my-urls

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

source code of this document

#1101 October 12, 2011 This Way 7

\startproject documentation

\product manual
\product faqs

\stopproject
\stopTEX

This means that we can also define the manual as follows:

\startTEX
\project documentation

\startproduct manual

\component titlepage
\component contents

\component chapter-1
\component chapter-2
\component chapter-3

\component index

\stopproduct
\stopTEX

Environments are only loaded once and when you run a component or
product that refers to environments or when environments are
picked up from an encapsulating structure you need to be aware of
the order of loading.

The names given after the start command are not that important
but the names after the simple commands refer to filenames, so
in the next case there need to be a file called \type
{index.tex}:

\startTEX
\component index
\stopTEX

Equally valid is:

\startTEX
\component[index]
\stopTEX

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

source code of this document

8 This Way October 12, 2011 #1101

Subpaths are also permitted:

\startTEX
\component manual/index
\stopTEX

The meaning of the mentioned commands is not frozen but adapts
itself to the current situation. A file can be processed many
times, only once or never. The following table shows what will
happen when:

\ctxlua{moduledata.jobs.showprocessors()}

When you load an environment or component, you can specify it to
be a \LUA\ file by using the \type {lua} or \type {cld} suffix.
In that case the file will be loaded in the right way. From the
table you can deduce that the following is also valid:

\startTEX
\environment mystyle

\starttext
% the content

\stoptext
\stopTEX

combined with:

\startTEX
\startenvironment mystyle

% the definitions
\stoptext
\stopTEX

This is about the simplest structure that you can use that still
gives a bit of abstraction.

In addition to files in a project structure, you can load
predefined modules.

\startTEX
\usemodule[mathml]
\stopTEX

or more specific:

\startTEX

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

source code of this document

#1101 October 12, 2011 This Way 9

\usemodule[x][mathml]
\stopTEX

Which limits the lookup to the \type {x} namespace. The first
match quits the search and the order of lookups is: \type {mkvi},
\type {mkiv}, \type {tex}, \type {cld}, \type {lua}. It follows
that modules can be \LUA\ files.

When you use structure in the files you will find an overview in
the log file. This looks as follows:

\starttyping
system > structure > start used structure

used structure > text: product-1
used structure > environment: environment-1
used structure > environment: environment-2
used structure > product: product-1
used structure > component: component-1
used structure > component: component-2
used structure > component: component-1
used structure > component: component-2

system > structure > stop used structure
\stoptyping

Some basic logging on the console can be enabled with:

\startTEX
\enabletrackers[system.jobfiles]
\stopTEX

A new command pair is the following:

\starttyping
\startdocument[settings]

structured content
\stopdocument
\stoptyping

The settings are key|/|value pairs and the values can be retrieved
using:

\starttyping
\documentvariable{key}
\stoptyping

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

source code of this document

10 This Way October 12, 2011 #1101

You can set \type {before} and \type {after} parameters and by
default
these are set up as follows:

\starttyping
\setvariables

[document]
[before=\directsetup{document:start},
after=\directsetup{document:stop}]

\stoptyping

You can for instance define these setups to generate a title page
(using document variables) and a colophon page. In the future
more
functionality might be added.

\setups [listing] \setups [lastpage] \stoptext

Pr
oj

ec
tS

tr
uc

tu
re

ProjectStructure

