This Way

ConTgXt magazine #12
August 2007

MKIV Goes Beta
Hans Hagen
PRAGMA ADE

This document describes (shortly) how to get the ConTgXt MKIV beta up and
running. This variant is LuaTgX aware and is downward compatible with MKIL
Eventually new functionality will be brought in. The main release will happen
about a year from now.

1 Introduction

The history of MKIV is described elsewhere, as is the new low level functionality
of LuaTgX, the new kid on the block for which MKIV is written.

The average user may not notice the difference between MkIV and MKII, but
a glance at the log file may confirm that there are differences. These will
be discussed at the mailing list and on the Wiki. You may also notice that
the LuaTgX-MKIV pair runs somewhat slower than pdfTEX-MKIL This has to
do with the fact that font handling is now done in Lua and advanced new
features demand extensive processing of the internal node lists. Some parts
of the code are rather well optimized, for instance file handling is on the
average faster than in pdfTEX. Instead of macro based utf handling, we now
have native utf support.

If you look at the files with suffix mkiv and lua you will see quite some
experimental code. Don't worry, not all code is enabled. For instance attribute
handling still has to be integrated. Also, font feature support will be improved,
completed and sped up. Currently OpenType features are bound to a font
instance but as soon as we can dynamically switch features, less font instances
are needed which will gain us some speed.

Eventually we will have a set of rather generic modules which makes it
possible to have most (Lua) based functionality also available in for instance
Plain TgX.

2 Installation

First of all, we advise you to define an environment variable TEXMFCACHE
which points to your favourite temporary path. On my machine this is

set TEXMFCACHE=c:\temp

Of course you need a recent version of LuaTgX. You need to put the binary
in your path. The pool file is includes in the binary so you don't need to
worry about that.

e copy luatex(.exe) to the binary path
e copy luatex(.exe) to the binary path as texlua(.exe)

Next you need to install a copy of ConTgXt:
e unzip cont-tmf.zip in your texmf-local tree

Since you update, make sure to remake the pdfIgX and XFTEX formats:

texexec --make --all --pdftex
texexec —--make --all —--xetex

In principle you can also say:

texexec —--make --all --luatex

In this case TgXexec will delegate format generation to luatools, so we have
to install this program first:

e MS Windows: copy both luatools.cmd and luatools.lua to the binary
path
e Unix: copy luatools.lua to the binary path as luatools (no suffix)

If you use Unix, you may need to apply:

tounix luatools
chmod 755 luatools

The scripts can be found in
texmf-local/scripts/context/lua

It makes sense to install mtxrun.lua in the same way. This is a replacement
for texmfstart that eventually will replace that script.

Now you can generate formats with TgXexec or you can run luatools directly:

luatools --generate
luatools --ini --compile --verbose cont-en

From the console you may deduce that we put file databases as well as
formats in the temporary path in a tree specific location. When TgXLua is
used, luatools will scan the disk itself, otherwise it will use the 1s-r database.
Best let luatools do the work. For the moment we use the good old texmf.cnf
file (although it is converted into a more suitable format) but this may change
in the future.

In the cache path you will find files with the suffix tma (Lua code, normally
a table) and tmc (the byte—compiled version of the former). In you runtime
path you will find tua and tuc files. These are the counterparts (and to be
replacements) of the utility files (multipass data).

In order to be able to start up LualgX needs a Lua file (unless in traditional
mode) and luatools will handle this. When things fail, make sure that you
have set the following variables:

TEXMFCNF=/tex/texmf-local/web2c
TEXMF={/tex/texmf,/tex/texmf-local}

We don't use any kpse code in MKIV so it may be that you need to help it
a bit in locating the configuration file and trees. Don't forget the braces when
your variable is a bit more complex! Of course you need values that make

sense at your system. When you generate the file databases you should get
something reported that looks like:

LuaTools | loading t:/minimal/texmf-local/web2c/texuf .cnf

LuaTools | loading t:/minimal/texmf/web2c/texuf.cnf

LuaTools | preparing configuration in c:/temp/luatex-cache/context/d2...df/trees/a362eae69dd96910a5515cd7c9351651 . tma
LuaTools | saving configuration in c:/temp/luatex-cache/context/d2...df/trees/a3b2eae69dd96910a5515cd7c9361551 . tma
LuaTools | compiling configuration to c:/temp/luatex-cache/context/d2...df/trees/a352eae69dd96910a5515cd7c9361551 . tmc
LuaTools | preparing configuration in c:/temp/luatex-cache/context/d2...df/trees/ce66215£31bd82750f81eeab38aabld4. tma
LuaTools | saving configuration in c:/temp/luatex-cache/context/d2...df/trees/ce6621531bd82750{81eeab38aabldd. tma
LuaTools | compiling configuration to c:/temp/luatex-cache/context/d2...df/trees/ce6621531bd82750{81eeab3Baabldd. tmc
LuaTools | locating list of t:/minimal/texmf-mswin

LuaTools | locating list of t:/minimal/texmf-project

LuaTools | locating list of t:/minimal/texmf-fonts

LuaTools | locating list of t:/minimal/texmf-local

LuaTools | locating list of t:/minimal/texmf-extra

LuaTools | locating list of t:/minimal/texmf

LuaTools | scanning path t:/minimal/texmf-nswin

LuaTools | 130 files found on 4 directories

LuaTools | scanning path t:/minimal/texmf-fonts

LuaTools | 532 files found on 45 directories

LuaTools | scanning path t:/minimal/texmf-local

LuaTools | 1474 files found on 138 directories

LuaTools | scanning path t:/minimal/texmf-extra

LuaTools | 19 files found on 17 directories

LuaTools | scanning path t:/minimal/texnf

LuaTools | 5167 files found on 197 directories

LuaTools | preparing files in c:/temp/luatex-cache/context/d2. . .df/trees/084a237b6d002dc35a14a188768¢3a78. tma
LuaTools | saving files in c:/temp/luatex-cache/context/d2...df/trees/084a237b6d002dc3bal4a188768¢c3a78. tna
LuaTools | compiling files to c:/temp/luatex-cache/context/d2...df/trees/084a237b6d002dc35a14a188768¢c3a78. tnc
LuaTools | preparing files in c:/temp/luatex-cache/context/d2...df/trees/9e7cc7cf83c346ecadd23466474dd0ee . tma
LuaTools | saving files in c:/temp/luatex-cache/context/d2...df/trees/9e7ccTcf83c346ecadd23466474dd0ee . tma
LuaTools | compiling files to c:/temp/luatex-cache/context/d2...df/trees/9eTccTcf83c346ecadd23466474dd0ee. tme
LuaTools | preparing files in c:/temp/luatex-cache/context/d2. ..df/trees/8322b38686a2adbfac823764135bdbd8. tma
LuaTools | saving files in c:/temp/luatex-cache/context/d2...df/trees/8322b33686a2adbfac823764135bdbd8. tma
LuaTools | compiling files to c:/temp/luatex-cache/context/d2...df/trees/8322b38686a2adbfac823764135bdbd8. tnc
LuaTools | preparing files in c:/temp/luatex-cache/context/d2...df/trees/af041a3f9d1037b124a0a45c60chelf!. tma
LuaTools | saving files in c:/temp/luatex-cache/context/d2...df/trees/af041a3f9d1037b124a0a46¢60cbelf! . tma
LuaTools | compiling files to c:/temp/luatex-cache/context/d2...df/trees/af041a3f9d1037b124a0adbc60chelf1 . tme
LuaTools | preparing files in c:/temp/luatex-cache/context/d2. . .df/trees/68c73¢891416316857d593095£7¢596. tma
LuaTools | saving files in c:/temp/luatex-cache/context/d2...df/trees/68cf73¢891416316857d593095£7c596. tma
LuaTools | compiling files to c:/temp/luatex-cache/context/d2...df/trees/68c73c891416316857d593095£7¢596. tme
LuaTools |

LuaTools | runtime: 0.965 seconds

When you want to test the databases, you can try:

luatools 1mri12.afm

On my system this reports:

c:/data/develop/tex/texnf-fonts/fonts/data/e-foundry/latin-modern/lmr12. afm

3 Fonts

We assume that you have installed the open type versions of the Latin Modern
and TEX Gyre fonts. If you have installed mtxrun you can test this with:

mtxrun --script fonts --list --pattern=pagella
This should give something like:

texgyrepagella-bold TeXGyrePagella-Bold texgyrepagella-bold.otf
texgyrepagella-bolditalic TeXGyrePagella-BoldItalic texgyrepagella-bolditalic.otf
texgyrepagella-italic TeXGyrePagella-Italic texgyrepagella-italic.otf
texgyrepagella-regular TeXGyrePagella-Regular texgyrepagella-regular.otf

These are the names that MKIV will recognize when you call for these fonts.
When a requested name is not found, MKIV will generate a database with
possible names. In that case it will report a log of found tree and system fonts.
System font paths are specified with the OSFONTDIR environment variable or

preferably in texmf.cnf.

report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:
report >> fontnames:

Actually MKIV

reloading font database

identifying tree font files with suffix otf

72 tree files identified, 234 hash entries added, runtime 0.153 seconds
identifying tree font files with suffix ttf

1 tree files identified, 1 hash entries added, runtime 0.035 seconds
identifying tree font files with suffix ttc

0 tree files identified, 0 hash entries added, runtime 0.035 seconds
identifying tree font files with suffix afm

521 tree files identified, 964 hash entries added, runtime 0.186 seconds
identifying system font files with suffix otf

0 system files identified, 0 hash entries added, runtime 0.039 seconds
identifying system font files with suffix ttf

193 system files identified, 614 hash entries added, runtime 0.187 seconds
identifying system font files with suffix ttc

10 system files identified, 98 hash entries added, runtime 0.076 seconds
identifying system font files with suffix afm

0 system files identified, 0 hash entries added, runtime 0.029 seconds
done

is rather tolerant in resolving font names. Because font names

are often rather inconsistent (across the domain of names) we also support
collapsed and stripped versions as well as combinations of main characteristics.
Future versions may also use additional third party databases (given that they
are available).

mtxrun --script fonts --list --all --pattern=pagella

texgyrepagella bold TeXGyrePagella-Bold texgyrepagella-bold.otf
texgyrepagella book TeXGyrePagella-Regular texgyrepagella-regular.otf
texgyrepagella-bold TeXGyrePagella-Bold texgyrepagella-bold. otf

texgyrepagella-bolditalic TeXGyrePagella-BoldItalic texgyrepagella-bolditalic.otf
texgyrepagella-italic TeXGyrePagella-Ttalic texgyrepagella-italic.otf
texgyrepagella-regular TeXGyrePagella-Regular texgyrepagella-regular.otf

texgyrepagellabold TeXGyrePagella-Bold texgyrepagella-bold.otf
texgyrepagellabolditalic TeXGyrePagella-BoldItalic texgyrepagella-bolditalic.otf
texgyrepagellabook TeXGyrePagella-Regular texgyrepagella-regular.otf
texgyrepagellaitalic TeXGyrePagella-Italic texgyrepagella-italic.otf

texgyrepagellaregular TeXGyrePagella-Regular texgyrepagella-regular.otf

However, we have adapted the existing typescripts so that they will choose
an open type font automatically when you ask for a Palatino. A good test is

the following file:
\starttext

\usetypescript [serif] [palatino]

\startlines

{\definefontsynonym[Test] [Palatino] [features=smallcaps]\definedfont[Test] effe fietsen (caps) }
{\definefontsynonyn[Test] [Palatino] [features=default] \definedfont[Test] effe fietsen (normal)}
{\definefontsynonyn[Test] [Palatino] \definedfont [Test] effe fietsen (normal)}
{\definefontsynonym[Test] [Palatino-Caps] [features=smallcaps]\definedfont [Test] effe fietsen (caps) }
{\definefontsynonym[Test] [Palatino-Caps] [features=default] \definedfont[Test] effe fietsen (normal)}
{\definefontsynonym[Test] [Palatino-Caps] \definedfont [Test] effe fietsen (caps) }
\stoplines

\stoptext

Don't forget the —-luatex directive for TpXexec, or add the engine directive

to the file:

% engine=luatex

Depending on what fonts are available, MKIV will use OpenType or Typel
instances. It will either use the information from the OpenType file or filter
information from afm files. If none of these is present, it will look for an tfm
file. What fonts are used can be see at the end of the log, This is what the

log of this document shows:

systems : input load time - 0.088 seconds

systems : fonts load time - 2.105 seconds

systems : mps conversion time - 0.001 seconds

systems : node processing time - 0.221 second

systems : used config path - c:/data/develop/tex/texnf-mine/web2c

systems : used cache path - c:/temp/luatex-cache/context/36cfaf81cc343ab85889217ccbb5039

systems : lua memory usage - 170244849 bytes

systens : loaded fonts - cmttl0:tfm lmex10:tfm Immil0:tfm Immil2:tfm lmmib:tfm Immi7:tfm 1mmi9:tfm
Inroman10-bold+default:otf lmromani0-bolditalictdefault:otf lmroman10-boldobliquexdefault:otf
Inroman10-capsregular+default:otf ImromaniO-italictdefault:otf Imromanl0-obliquetdefault:otf
Imroman10-regularxdefault:otf Imromani2-bold*default:otf Imromanl2-italic*default:otf
Inroman12-oblique*default:otf lmromani2-regulartdefault:otf lmroman5-bold*default:otf
Inroman5-regular+default:otf lmroman7-bold*default:otf lmroman7-regulartdefault:otf
Imroman9-bold*default:otf Imroman9-italicxdefault:otf lmroman9-obliquexdefault:otf
Inroman9-regulartdefault:otf Imsyl0:tfm Insyb:tfm Imsy7:tfm Imsy9:tfm
Imtypeuriter10-lightcondensed:otf Imtypewriterl0-regular:otf msami0:tfm msamb:tfm msam?:tfm
nsbmi0:tfm msbmb:tfm msbm7:tfm pxex:tfm pxmi:tfm pxr:tfm pxsy:tfm pxsya:tfm pxsyb:tfm rm-lnrl0:tfm
ro-1nr12:tfm ro-Imrb:tfm ro-lmr7:tfm rm-Imr9:tfm rpxmi:tfm rpxpplr:tfm rpxpplri:tfm rpxr:tfm
texgyrepagella-bold+default:otf texgyrepagella-bolditalic*default:otf texgyrepagella-italictdefault:otf
texgyrepagella-regularxdefault:otf texgyrepagella-regulartsmallcaps:otf

systems : lua modules/bytes - 68/3140217

systems : lua instances/bytes - 1/170253423

When a font is loaded the first time, it may take some extra time because a
cached instance is generated.

This is no manual on fonts, nor on OpenType features. However, if you want
to experiment with fonts, here is an indication of how more advanced things
can be achieved:

\definefontfeature
[arabtest]
[mode=node, language=dflt,script=arab,
liga=yes,dlig=yes,rlig=yes,calt=yes,clig=yes,
init=yes,medi=yes,fina=yes,isol=yes,
mkmk=yes ,mark=yes,kern=yes, curs=yes]

\definefontsynonym
[Arabic Typesetting]
[arabtype]
[features=arabtest]

\definefont
[MyFont]
[Arabic Typesetting]

After this, \MyFont should switch to Arabic rendering. Of course some more
is needed, like:

\textdir TRT \pardir TRT \MyFont

In a similar fashion you can set up Zapfino, given that you have the profes-
sional version of this font.

\definefontfeature
[zapfino]
[mode=node,script=latn,language=dflt,
liga=yes,clig=yes,calt=yes]

\font\MyFont=ZapfinoExtralLTPro*zapfino at 24pt

Here we show the more low level way of associating features with fonts. We
advice users to stick to the more verbose and indirect way.

4 Status

Keep in mind that MKIV functionality is experimental, may change and in
many cases is hidden for the user. The previous section may indicate that only
fonts are dealt with, but there is more. Once stabelized new and extended
functionality will be discussed in dedicated manuals. Some is already revealed
in mk.pdf and in articles.

e You can read from zip archives and protocols like http and ftp. The prefix
for zip files is zip://.

e Color and similar features will be reimplemented on top of the already
present attributes framework.

e As soon as control over paragraph building is present, we will enable
specialized hyphenation, spell checking, inter—character spacing, etc. These
features work already but don't yet interplay nicely with some TgX internals
that we need more control over.

e Logging can be done in xml format, error and debug messages can be
reported in html popups.

e Currently we don't ship the xml parsers, but this will happen soon. These
are written in Lua and will provide some specialized xml path searching.

e Grid snapping, line numbering, parallel texts and similar trickery has been
experimented with (I have lots of test files) but will be built in in due
time. Using Lua and node list manipulations for this demands splitting
core files into MKII and MKIV parts and that takes a while.

e New features like weighted vertical spacing are ‘work in progress’ and
need to be wrapped in a high level interface.

e Verbatim is rewritten and only TgX and METAPOST highlighting are sup-
ported. Once the interface for this has stabelized, we expect users to come
up with other pretty printing code.

e There is a documentation module for Lua code. It works ok, but may be
rewritten using the new lpeg feature.

e Index sorting is already done in Lua, so TgXutil (functionality) is no longer
needed. Eventually TpXexec will be gone too, that is, it will be a call to
mitxrun with a TgXexec script component. This means that a few years
along the road the dependency on Ruby will be gone as well.

5 Help

As usual help can be asked for on the mailing list. Testing is appreciated and
we expect the usual input for enhancements. For instance, Arabic is already
kind of supported, but for Chinese I need to adapt some of the MKII trickery.

From now on the so called minimal ConTgXt distributions will contain LuaTgX.
Once we have a stable MkIV we can consider lean and mean LuaTgX mininal
that installs and runs from a zip file. It is already possible to (auto)mount
trees in zip files, but what we really need is a real minimal main tree.

