uabeH sueH uoiljeiedag

1 Color spaces

Currently CONTEXT supports four color spaces: gray, RGB, CMYK, and spot colors. The first
three are defined rather straightforward. The subtractive colors in CMYK color space are
defined as follows:

\definecolor [my-cyan] [c=1]
\definecolor [my-magenta] [m=1]
\definecolor[my-yellow] [y=1]
\definecolor [my-black] [k=1]

These colors (also known as process colors) show up as follows:

In the RGB color space, we use additive colors:

\definecolor [my-red] [r=1]
\definecolor[my-green] [g=1]
\definecolor [my-blue] [b=1]

This time we get:

Gray colors are defined with:

\definecolor[my-black] [s=0]

Watch how this time we start at zero!

I |

When defining a color in CMYK color space, you can mix ¢, m, y and k components. On the
cover you see four colors defines as:

\definecolor [cyan] [c=1,m=.25,y=.25,k=.25]
\definecolor [magental] [c=.25,m=1,y=.25,k=.25]
\definecolor [yellow] [c=.25,m=.5,y=1,k=.25]
\definecolor [black] [c=.25,m=.5,y=.25,k=1]

This leaves us spot colors. These are defined in two steps. First you define the spot color
itself:

\definecolor [my-spot] [c=.7,m=.5,y=.3,k=.1]

As any other primary color, this color covers a range:

You can now define colors in this range:

\definecolor[bright] [my-spot] [p=1]
\definecolor[dark] [my-spot] [p=.5]

The chained definition is needed because devices, like screen devices, that cannot handle
spot colors and need to have a fall back.

2 Special effects

Those familiar with MetaFun will know that it supports shading. Actually the previous
shades were produced with code like:

\startMPcode

linear_shade (unitsquare xyscaled (TextWidth, 1cm), 5,
\MPcolor {my-spot}, white) ;

\stopMPcode

As you see here, we use \MPcolor to tell METAPOST what color to use. Because CONTEXT
will handle the color definitions when including the graphic in the document, the proper
transformations will take place and the required (PDF) resources will be embedded.

Both CONTEXT and MetaFun support transparent colors. As you may expect, transparency
works for all color spaces. However, the place where you define them differs:

\definecolor[redish] [r=.5,t=.5,a=1]
\definecolor[cyanish] [c=.5,t=.5,a=1]
\definecolor[grayish] [s=.5,t=.5,a=1]

but:
\definecolor[spottish] [c=.3,m=.5,y=.7,k=.1]
with:

\definecolor[brightish] [spottish] [p=1,t=.5,a=1]
\definecolor [darkish] [spottish][p=.5,t=.5,a=1]

The following graphic demonstrates that these colors indeed are transparent.

3 Options

You can mix color spaces in one document. However, what color space you use, depends on
the medium on which the document will be read.

For screen documents, RGB is often best, if only because screen devices use these three color
channels themselves. All channels zero gives you black, and all channels one produces white.

Printing houses often prefer CMYK and/or spot colors. They will split the document into the
colors used for printing, so in case of CMYK only, there will be four variants, one for each
process color. If a document has only one or two colors, spot colors will give good results, if
only because no screen has to be used. Also, the less channels, the cheaper the print.

One danger luring with CMYK is that some applications produce output depending on the
medium that will be used: plain paper, glossy paper, colored paper etc. It’s best to let this
kind of fine-tuning to the raster image processor that will produce the plates, since that
device knows best what it is (in)capable off and what compensations are needed.

You can control CONTEXT’s color mechanism in several ways using the \setupcolors com-
mand. First of all, you need to enable colors:

\setupcolors[state=start]
By default all four methods are supported, but you can change this behaviour:
\setupcolors [rgb=no, spot=no]

This will force CONTEXT to use CMYK and gray scales only (gray scale takes less code and will
remap on the black process color).

Aslong as you use \MPcolor in your METAPOST graphics, you can be sure that those graphics
will obey the color settings. In the background, CONTEXT will convert colors defined in the
disabled color spaces into those enabled.

Although it can be tempting to use names for colors like red or blue, it makes sense to use
more meaningful names, like important or dangerous.

\definecolor [dangerous] [r=1]
Even better is to define colors in an indirect way:

\definecolor[red] [r=1]
\definecolor[dangerous] [red]

This means that when we map more colors on red, we only have one definition of red to
maintain. At the time of definition of dangerous, only the name is mapped, which means
that we can change the definition of red afterwards. If you want to freeze colors at definition
time, say:

\setupcolors[expansion=yes]

You can specify colors in your preferred color space, but your preferences may not match
those of your printer or printing house. For that reason, CONTEXT provides color conversion.
You can for instance force CMYK output by saying:

\setupcolors[rgb=no, spot=no, cmyk=yes]

If you also turn off CMYK support, you will get weighted gray scales. You can also demand
reduced CMYK color, where the black component is avoided, by setting reduction to yes.
Table 1 shows what happens when such conversions are asked for. We use the previously
defined colors.

color mixed rgb cmy (reduced) cmyk gray
red 100 100 0110 0110 0.300
green 010 010 1010 1010 0.590
blue 001 001 1100 1100 0.110
cyan 1000 011 1000 1000 0.700
magenta 0100 101 0100 0100 0.410
yellow 0010 110 0010 0010 0.890
spot 7.5.3.1 0.2000.400 0.600 0.8000.6000.4000 .7.5.3.1 0.362

bright my-spot1 0.200 0.400 0.600 0.800 0.600 0.400 0 0.700 0.500 0.300 0.100 0.362
dark my-spot .5 0.100 0.200 0.300 0.400 0.300 0.200 0 0.350 0.250 0.150 0.050 0.181

Table1 This table show what values end up in the output files when conversion
takes place.

Due to the nature of TgX and the control needed for output devices, you need to be aware
of interference of color switches and typesetting. The low level color control commands (for
instance literal PDF code) ends up in the page stream. We will demonstrate this with an
example (here we use the same cyan variant as on the cover):

We start with no colot, i .25 .25 .25 k1 .25 .25 .25 4but now we have switched to cyan,
and now we're typesetting in bright,
.25 .25 25k 1 .25 .25 .25 4, we're back at cyan again.}o :

/my-spot CS 1 SC

/my-spot cs 1 sc

1 .25 .25 .25 k 1 .25 .25 .25 4 and some cyan, and

.500rg .500 RGLTr2 gs|

0 G

The output (DVI converted to POSTSCRIPT, or PDF) is made up of so called independent
pages. This means that, apart from resources like fonts, printing a page should not demand
processing of previous pages. So, when we use special features, like color, we have no
knowledge about the current color at a page break. Therefore, we need to synchronize colors
after a page break.

TeXinvokes the output routine (page builder) after a paragraph is processed. If the paragraph
is typeset in a color, the color is already reset to its orginal. However, when TgX decides that
it should break in the middle of that particular paragraph, we have to make sure that we add
codes like shown in the previous example at the top of the next page. CONTEXT keeps track
of colors and tries to synchronize the current state and the output state as good as possible.

Starting and ending a color obeys TgX’s grouping mechanism. This means that when you
want to typeset a document as a whole in a color, you need to group the whole document.
This can interfere with the final page break, and as a result, low level data streams like the
ones shown before may end up on a page of their own, which results in an empty page. In
order to prevent such problems, you can set the document color with:

\setupcolors[textcolor=somecolor]

Similar complications can occur when you use colors in the \framed command, which is
also used extensively in core macros. The \color command expects an argument, and

therefore exactly knows where to end coloring. Commands like \red on the other hand,
hook themselves into the grouping mechanism. As a result, their behaviour may interfere
with other mechanism, like automatic strut placement. Take the following text (here we use
the same magenta variant as on the cover):

The small bars shown here are called struts. Normally they
are invisible, but they play an important role in ensuring
consistent vertical spacing. You can {\magenta visualize}
them with \type {\showstruts}.

If we frame this text with:
\framed[align=middle]{\cyan...}

we get:

The small bars shown here are called struts. Normally they are in-
visible, but they play an important role in ensuring consistent
vertical spacing. You can visualize them with \showstruts.

At first sight the result looks ok, but let’s visualize the struts:

IThe small bars shown here are called struts. Normally they are in-
visible, but they play an important role in ensuring consistent
vertical spacing. You can visualize them with [\showstruts.

As you can see, there is some white space before the strut. Normally such a strut tries to get
rid of it, so how come that it fails here? Let’s also visualize the low level streams:

|1425 25 .25K1.25 .25 .25 H he small bars shown here are called struts. Normally they are
invisible, but they play an important role in ensuring consistent vertical spacing.
You can |21 .25 25k 251 .25 .25 4Visualize1 .25 .25 .25k 1 .25 .25 4254 them with I\showstruts. og ocl

It now becomes clear that the color commands end up before the strut, and as a result there
is no way to go back. This is why in such situations it’s better to apply the colors in a different
way:

\framed[align=middle,foregroundcolor=cyan]{...}

This results in:

IThe small bars shown here are called struts. Normally they are invisible,
but they play an important role in ensuring consistent vertical spacing. You
Can [251 .25 .25k .25 1 .25 .25 Kklisualize‘i .25 .25 .25k 1 .25 .25 .254 them with |\showstruts.|

1.25 .25 .26k 1 .25 .25 .254

OgOG‘

Now, when we turn off the visualization, we get the properly aligned text:

The small bars shown here are called struts. Normally they are in-
visible, but they play an important role in ensuring consistent
vertical spacing. You can visualize them with \showstruts.

The main message here is that, when you apply color, you need to be aware of the fact that
this introduces (normally) invisible content. Therefore, in case of doubt, use the \color or
\startcolor command.

4 Groups and palets

The reference manual describes in detail how you can group colors and how you can define
color palets. Since we're dealing with color based workflows here, we only want to stress
that using color palets may ease your task when one style has to serve multiple documents
with different color settings. You define a palet as follows:

\definepalet[first] [maincolor=cyan,subcolor=yellow,extracolor=magental
\definepalet [second] [maincolor=magenta,subcolor=cyan,extracolor=yellow]

You can inherit them as well:

\definepalet [default] [first]

This means that you can isolate color definitions pretty well. Such a palet is enabled by:
\setuppalet [first]

Because in the end, we still deal with colors, all the color manipulations mentioned in this
document apply to palets as well. You can inspect a palet by \showpalet, as demonstrated
in figure 1. The gray bars are the weighted gray alternatives.

maincolor subcolor extracolor maincolor subcolor extracolor
first second

Figure 1 Two color palets visualized.

5 Separation

We now come to the main topic of this manual: color separation. An RGB color has three
color components, while an CMYK color has four. Although modern printing devices should
be able to deal with both, in print the CMYK color space is preferred.

When printing in full color, the four colors are printed separately, which comes down to
printing four instances of the same document in succession. The separation needed for this
can best be dealt with in the engine itself, but there may be occasions where you need to
provide the separations yourself.

You get the cyan channel version of a document when you say:
\setupcolors[split=c]

In a similar way, you can ask for a magenta (m), yellow y, red (r), green (g), blue (b), or black
(s) version. If you want a spot color, you set split to the desired color:

\setupcolors[split=yourspot]
A more convenient way to do this, is to use TEXEXEC:
texexec --separation=c

There is a preliminary script texsplit that automatically splits the document, using infor-
mation stored in the auxiliary file jobname.tuo.

Graphics are a complication in this process. For black—and-white graphics, you can specify
in which channel they have to end up:

\externalfigure[graphic] [split=c]

Color graphics need to be separated independent of the document and we assume that this
has been done. We discuss three ways to deal with including them.

A convenient way to assign the (separated) graphics to a channel is the following:
\externalfigure[graphic\colorsplitsuffix]

In this case, the original graphic is called graphic, while the cyan one is called graphic-c,
and the rest accordingly.

An alternative is to collect the graphics in a figure database and just switch databases. This
saves you the effort of specifying the suffix each time.

\usefigurebase [graphics\colorsplitsuffix]

Instead of a suffix, you can apply a prefix (which is sometimes handier when you want to
list files):

\usefigurebase[\colorsplitprefix graphics]

Alternatively, you can use a different path for the split graphics:

\setupexternalfigures[directory={./figures\colorsplitsuffix}]
A third alternative is to use modes. You can of course introduce special modes, like:

\startmode [cyan]
\setupcolors[split=c]
\usefigurebase [cyan]

\stopmode

Here you need to enable a mode or run TEXEXEC with --mode=cyan. However, CONTEXT
provides channel specific system modes. A system mode is prefixed by a *.

\startmode [*color-c]
all kind of channel specific settings
\stopmode

All this may sound complicated, but color separation is a complex matter anyway, so you'd
better know what you're doing. This is especially true when you set criterium, which by
default is set to all. This means that when a 100% spot color is used, it is assumed to
completely knock out its background. On the other hand, for instance a 50% spot color is
painted on a white background.

\setupcolors[criterium=none]

When criterium is set this way, the background is always painted in white. This assumes a
rather precise printing workflow.

For external figures, you can specify a background color with splitcolor. By default this
color is set to white.

\setupexternalfigures[splitcolor=white]

6 Bonus example

When color separation was added CONTEXT, some experiments were conducted with color-
ing bitmap graphics. One of the poor-mans colorizations is presented here.

First we define a few transparent colors. Out of the alternatives, we choose overlay and
softlight. (More about transparency can be found in the MetaFun manual.)

\definecolor [p-one] [c=1,y=.3,k=.3]
\definecolor [p-two] [c=.25,y=.8]
\definecolor [p-three] [c=.9,y=.15]

\definecolor [one-1] [p-one] [p=1,t=1,a=overlayl]
\definecolor [one-2] [p-onel [p=1,t=1,a=softlight]

10

\definecolor [two-1] [p-two] [p=1,t=1,a=overlay]
\definecolor [two-2] [p-two] [p=1,t=1,a=softlight]

\definecolor [three-1] [p-three] [p=1,t=1,a=overlay]
\definecolor [three-2] [p-three] [p=1,t=1,a=softlight]

\definecolor [p-one] [c=1,y=.3,k=.3]
\definecolor [p-two] [c=.25,y=.8]
\definecolor [p-three] [c=.9,y=.15]

\definecolor [one-1] [p-one] [p=1,t=1,a=overlay]
\definecolor [one-2] [p-one] [p=1,t=1,a=softlight]

\definecolor [two-1] [p-two] [p=1,t=1,a=overlayl]
\definecolor [two-2] [p-two] [p=1,t=1,a=softlight]

\definecolor [three-1] [p-three] [p=1,t=1,a=overlay]
\definecolor [three-2] [p-three] [p=1,t=1,a=softlight]

This cheap trick leads to:

overlay softlight overlay softlight overlay softlight

In this example, the gray background was accomplished with:

\definecolor[darkgray] [s=.3]

\defineframedcontent

(mill]

[background=color,
backgroundcolor=darkgray,
frame=off,
offset=1ex]

and:

\startframedcontent [mill] ... \stopframedcontent

11

This example was part of a test document with three spot colors and black, which demands
four splits. The original and its four splits are shown on the next pages.

C .

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about the
rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or software.
There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad typographic design.
Many people are just fascinated by their PC’s tricks, and think that a widely—praised program, called up on the screen, will make everything
automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely—praised program, called up on the screen,
will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about the
rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or software.
There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad typographic design.
Many people are just fascinated by their PC’s tricks, and think that a widely-praised program, called up on the screen, will make everything
automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad

typographic design. Many people ar fascinated by their PC’s tricks, and think that a widely—praised program, called up on the screen,
will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely—praised program, called up on the screen,
will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely—praised program, called up on the screen,
will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely—praised program, called up on the screen,
will make everything automatic from now on.

overlay soff overlay softlig]

Figure 2 A test document with three spot colors & black.

12

Coming back to the use of typefaces in electronic publishing: many of the new their knowledge and information about the
rules of typography from books, from computer magazines o the instruction manuals which they get with the purchase of a PC or software.
There is not so much basic instruction, as of now, as there was in the old d a
Many people ae jus fascinated by their PC’s tricks, and think that a widely-praised program,called up on the screen, will make everything
automatic from now on.

Coming back to the use of typefaces in shing: many of the new and information ab
he ks of typosraphy from books,from computer magavines o the msricton manusts which hey get with the purchase of PC o
software. There s not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely-praised program, called up on the screen,
will make everything automatic from now on.

Coming back to the use of typefaces in p any of the new

information about the
rules of typography from books, from computer magazines or the instruction manuals which they gt with the purchase of a PC or software.
There is not so much basic instruction, as of now, as there was in the old d:
Many people are ust fascinated by their PC
automatic from now on.

dba
tricks, and think that a widely-praised program, called up on the screen, wm make everything

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely-praised program, called up on the screen,

will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and
typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely-praised program, called up on the scr

will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC's tricks, and think that a widely-praised program, called up on the screen,
will make everything automatic from now on.

back to the use of typefaces in el
of typography from books
There is not so much

tronic publishing: many of the new typog;

ers receive their knowledge and information about

nes or the instruction manuals which they get with the purcha

Many

ople are just fascinated by their PC's tricks, an bink that »sidely ised program, called up on the scre

will make everything automatic from now on

Y,

LS (V.
Coming back to the use of typefaces in electronic publishing: many of the new typographers reccive their knowledge and information about
the rules of typography from books, from computer magarings or he insruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences betuween good and bad
typographic design. Many people are just fascinated by their PCs tricks, and think that a widely-praised program, called up on the screen,
will make everything automatic from now on.
Coming back to the use of typefaces in clectronic i many of the nevw ty cive their d information about

the rules of typography from books, i

rom computer magazines or the instruction manuals which they get with the purchase of a PC o
software. There is not so much basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC’ tricks, and think that a widely-praised program, called up on the screen,
will make everything automatic from now on.

overlay softlight overlay softlight overlay softlight

