
SciTE
IN CONTEXT

1

1 About SCITE

SCITE is a source code editor written by Neil Hodgson. After playing with several editors we decided that this
editor was quite configurable and extendible. At PRAGMA ADE we use TEXEDIT, an editor we wrote long ago in
MODULA as well as a platform independent reimplementation called TEXWORK written in PERL/TK. Although
these editors provide some functionality not present in SCITE, we’ve decided to use SCITE because it frees us
from maintaining the other ones. In due time we will write some extensions for SCITE to fill in the gaps using
the buitl in LUA capabilities.

For those who want to configure an editor, it may make sense to look into the the SCITE property files that ship
with CONTEXT, especially:

context.properties

Here we define some menu entries and keybinding that may make sense in other editing environments as well.

2 Installing SCITE

Installing SCITE is straightforward. We are most familiar with MS WINDOWS but for other operating systems
installation is not much different. First you need to fetch the archive from:

www.scintilla.org

The MS WINDOWS binaries are zipped in wscite.zip, and you can unzip this in any directory you want as
long as you make sure that the binary ends up in your path or as shortcut on your desktop. So, say that you
install SCITE in

c:\scite\wscite

You need to add this path to your local path definition.

For UNIX, one can take a precompiled version as well. Here we need to split the set of files into:

/usr/bin
/usr/share/scite

The second path is hard coded in the binary.

If you want to use CONTEXT, you need to copy the relevant files from

2

<cont-tmf.zip>/context/data

to the path were SCITE expects property (*.properties) files. In addition, you need to copy
the following \LUA\ script to the same location: \starttyping <cont-tmf.zip>/scripts/context/lua/scite-
ctx.lua \stoptyping After this, things should run as expected given that TEX runs at the
console as well).

In order to run the commands needed, we assume that the following programs are installed:

• tidy (for quick and dirty checking of XML files)
• xsltproc (for converting XML files into other formats)
• acrobat (for viewing files)
• ghostview (for viewing files, use gv on UNIX)
• rxvt (a console, only needed on UNIX)

When all the files are present, you need to make sure that the right properties are loaded. You can do that by
including the following line at the end of one of the global or user properties files:

import context.properties

In order for the --autopdf switch to work well under UNIX, you need to open acroread first. You can turn off
auto opening of the result file by adding the following line to one of your local properties files:

name.texexec.flag.pdfopen=

If you want to use the Latin Modern Fonts, you can best install the file

<cont-tmf.zip>/fonts/truetype/hoekwater/lm/LMTypewriter10-Regular.ttf

3 The TEX lexer

SCITE provides several so called lexers. A lexer is responsible for highlighting the syntax of your document. The
way a TEX file is treated is configured in the file:

tex.properties

You can edit this file to your needs using the menu entry under options in the top bar. In this file, the following
settings apply to the TEX lexer:

3

lexer.tex.interface.default=0
lexer.tex.use.keywords=1
lexer.tex.comment.process=0
lexer.tex.auto.if=1

The option lexer.tex.interface.default determines the way keywords are highlighted. You can control
the interface from your document as well, which makes more sense that editing the configuration file each time.

% interface=all|tex|nl|en|de|cz|it|ro|latex

The values in the properties file and the keywords in the preamble line have the following meaning:

0 all all commands (preceded by a backslash)
1 tex TEX, ε-TEX, PDFTEX, OMEGA primitives (and macros)
2 nl the dutch CONTEXT interface
3 en the english CONTEXT interface
4 de the german CONTEXT interface
5 cz the czech CONTEXT interface
6 it the italian CONTEXT interface
7 ro the romanian CONTEXT interface
8 latex LATEX (apart from packages)

The configuration file is set up in such a way that you can easily add more keywords to the lists. The keywords
for the second and higher interfaces are defined in their own properties files, like:

cont-nl-scite.properties
cont-en-scite.properties
latex-scite.properties

The CONTEXT distribution comes with a file:

context.properties

as well as the interface specific files. There are two way to make sure that the extra keywords are loaded. One
way is to copy the following files to your SCITE properties path.

cont-*-scite.properties
latex-scite.properties

4

The *-scite files define the keywords, while the later configures SCITE for CONTEXT. If you are no CONTEXT

user and want another brand of TEX to be processed, you can tweak the properties, or better: redefine some of
them in your SciTEUser.properties. For example plain TEX users may like:

file.patterns.tex=*.tex;*.sty;
filter.tex=TeX|$(file.patterns.tex)|
lexer.$(file.patterns.tex)=tex
command.compile.$(file.patterns.tex)=
command.build.$(file.patterns.tex)=tex $(FileNameExt)
command.go.$(file.patterns.tex)=gv $(FileName).pdf

On the other hand, LATEX users may want:

file.patterns.latex=*.tex;*.sty;*.aux;*.toc;*.idx;
filter.latex=LaTeX|$(file.patterns.latex)|
lexer.$(file.patterns.latex)=tex
command.compile.$(file.patterns.latex)=
command.build.$(file.patterns.latex)=pdflatex $(FileNameExt)
command.go.$(file.patterns.latex)=gv $(FileName).pdf

But, since you are a CONTEXT user, you will need:

file.patterns.context=*.tex;*.tui;*.tuo;*.sty;
filter.context=ConTeXt|$(file.patterns.context)|
lexer.$(file.patterns.context)=tex
command.compile.$(file.patterns.context)=
command.build.$(file.patterns.context)=texexec --pdf $(FileNameExt)
command.go.$(file.patterns.context)=gv $(FileName).pdf

The good news is that CONTEXT users don’t have to mess around with the properties files! They have:

context.properties

You can best put this file in the same path as SciTEUser.properties. In this user file, you can add the
following line:

import context

5

Now you have much more commands available (it makes sense to take a look into this file). Beware: this setup
assumes that you have the Latin Modern Typewriter font on your system and that your operating system is
aware of that. If needed, you can add options (or local changed) after the line that loads context.properties.

If you didn’t copy the cont-*.properties files to the SCITE properties path, you can put them in the same
path as SciTEUser.properties, in which you then have to add:

import cont-cz-scite
import cont-de-scite
import cont-en-scite
import cont-fr-scite
import cont-it-scite
import cont-nl-scite
import cont-ro-scite
import cont-xx-scite
import latex-scite
import context

It may sound complicated but if you have done it once, you get the picture quite well, and find out that SCITE
can easily be tuned to your local preferences.

The CONTEXT related properties files are part of the CONTEXT distribution and can be found in one of the
following places:

../tex/texmf/context/data

../tex/texmf-local/context/data

We generate the interface specific property files automatically from the CONTEXT interface definition files, while
the xx file is hand--crafted and contains missing or very special bits and pieces.

Back to the properties in tex.properties. You can disable keyword coloring alltogether with:

lexer.tex.use.keywords=0

but this is only handy for testing purposes. More interesting is that you can influence the way comment is
treated:

lexer.tex.comment.process=0

6

When set to zero, comment is not interpreted as TEX code and it will come out in a uniform color. But, when set
to one, you will get as much colors as a TEX source. It’s a matter of taste what you choose.

The lexer tries to cope with the TEX syntax as good as possible and takes for instance care of the funny ^^
notation. A special treatment is applied to so called \if’s:

lexer.tex.auto.if=1

This is the default setting. When set to one, all \ifwhatever’s will be seen as a command. When set to zero,
only the primitive \if’s will be treated. In order not to confuse you, when this property is set to one, the lexer
will not color an \ifwhatever that follows an \newif.

4 The METAPOST lexer
The METAPOST lexer is set up slightly different from its TEX counterpart, first of all because METAPOST is more a
language that TEX. As with the TEX lexer, we can control the interpretation of identifiers. The METAPOST specific
configuration file is:

metapost.properties

Here you can find properties like:

lexer.metapost.interface.default=1

Instead of editing the configuration file you can control the lexer with the first line in your document:

% interface=none|metapost|mp|metafun

The numbers and keywords have the following meaning:

0 none no highlighting of identifiers
1 metapost or mp METAPOST primitives and macros
2 metafun METAFUN macros

Similar to the TEX lexer, you can influence the way comments are handled:

lexer.metapost.comment.process=1

This will interpret comment as METAPOST code, which is not that useful (opposite to TEX, where documentation
is often coded in TEX).

7

The lexer will color the METAPOST keywords, and, when enabled also additional keywords (like those of META-
FUN). The additional keywords are colored and shown in a slanted font.

The METAFUN keywords are defined in a separate file:

metafun-scite.properties

You can either copy this file to the path where you global properties files lives, or put a copy in the path of your
user properties file. In that case you need to add an entry to the file SciTEUser.properties:

import metafun-scite

The lexer is able to recognize btex--etex and will treat anything in between as just text. The same happens
with strings (between "). Both act on a per line basis.

5 The XML exporter
The exporter will be descibed as soon as there are styles for processing the XML code. For the moment we stick
to showing the schema.

<?xml version="1.0" ?>

<!--

filename : scite.rng
comment : scite xml export specification
version : 1.0 - September 2003
author : Hans Hagen
company : PRAGMA ADE - Hasselt NL
url : www.pragma-ade.com

-->

<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
<ref name="document"/>

</start>

8

<define name="document">
<element name="document">

<optional>
<attribute name="filename"/>
<attribute name="type"/>
<attribute name="version"/>

</optional>
<optional>

<ref name="data"/>
</optional>
<optional>

<ref name="text"/>
</optional>

</element>
</define>

<define name="data">
<!-- reserved for future usage -->
<element name="data">

<optional>
<attribute name="comment"/>

</optional>
<empty/>

</element>
</define>

<define name="text">
<element name="text">

<optional>
<attribute name="comment"/>

</optional>
<zeroOrMore>

<ref name="line"/>
</zeroOrMore>

</element>
</define>

9

<define name="line">
<element name="line">

<zeroOrMore>
<choice>

<group>
<optional>

<!-- number of empty lines -->
<attribute name="n"/>

</optional>
<empty/>

</group>
<group>

<zeroOrMore>
<choice>

<ref name="space"/>
<ref name="tagged"/>

</choice>
</zeroOrMore>

</group>
</choice>

</zeroOrMore>
</element>

</define>

<define name="space">
<element name="s">

<optional>
<!-- number of spaces -->
<attribute name="n"/>

</optional>
<empty/>

</element>
</define>

<define name="tagged">
<element name="t">

<optional>

10

<!-- style number -->
<attribute name="n"/>

</optional>
<zeroOrMore>

<choice>
<text/>
<ref name="space"/>
<element name="l">

<!-- less token -->
<empty/>

</element>
<element name="g">

<!-- greater token -->
<empty/>

</element>
<element name="a">

<!-- ampersand token -->
<empty/>

</element>
<element name="h">

<!-- hash token -->
<empty/>

</element>
</choice>

</zeroOrMore>
</element>

</define>

</grammar>

6 Using ConTEXt

As soon as they are stable, we will describe the CONTEXT specific menu commands and keybindings here.

11

7 Extensions (using LUA)

When the lua extensions are loaded, you will see a message in the log pane that looks like:

- see scite-ctx.properties for configuring info

- ctx.spellcheck.wordpath set to ENV(CTXSPELLPATH)
- ctxspellpath set to c:\data\develop\context\spell
- ctx.spellcheck.wordpath expands to c:\data\develop\context\spell

- ctx.wraptext.length is set to 65
- key bindings:

Shift + F11 pop up menu with ctx options

Ctrl + B check spelling
Ctrl + M wrap text (auto indent)
Ctrl + R reset spelling results
Ctrl + I insert template
Ctrl + E open log file

- recognized first lines:

xml <?xml version=’1.0’ language=’nl’
tex % language=nl

This message tells you what extras are available.

8 Templates

There is an experimental template mechanism. One option is to define templates in a properties file. The
property file scite-ctx-context contains definitions like:

command.25.$(file.patterns.context)=insert_template \
$(ctx.template.list.context)

12

ctx.template.list.context=\
itemize=structure.itemize.context|\
tabulate=structure.tabulate.context|\
natural TABLE=structure.TABLE.context|\
use MP graphic=graphics.usemp.context|\
reuse MP graphic=graphics.reusemp.context|\
typeface definition=fonts.typeface.context

ctx.template.structure.itemize.context=\
\startitemize\n\
\item ?\n\
\item ?\n\
\item ?\n\
\stopitemize\n

The file scite-ctx-example defines XML variants:

command.25.$(file.patterns.example)=insert_template \
$(ctx.template.list.example)

ctx.template.list.example=\
bold=font.bold.example|\
emphasized=font.emphasized.example|\
|\
inline math=math.inline.example|\
display math=math.display.example|\
|\
itemize=structure.itemize.example

ctx.template.structure.itemize.example=\
<itemize>\n\
<item>?</item>\n\
<item>?</item>\n\
<item>?</item>\n\
</itemize>\n

For larger projects it makes sense to keep templates with the project. In one of our projects we have a directory
in the path where the project files are kept which holds template files:

13

..../ctx-templates/achtergronden.xml

..../ctx-templates/bewijs.xml

One could define a template menu like we did previously:

ctx.templatelist.example=\
achtergronden=mathadore.achtergronden|\
bewijs=mathadore.bewijs|\

ctx.template.mathadore.achtergronden.file=smt-achtergronden.xml
ctx.template.mathadore.bewijs.file=smt-bewijs.xml

However, when no such menu is defined, we will automatically scan the directory and build the menu without
user intervention.

9 Using SCITE

The following keybindings are available in SCITE. Most of this list is taken from the on line scite help pages.

keybinding meaning (taken from the Scite help file)

Ctrl+Keypad+ magnify text size
Ctrl+Keypad- reduce text size
Ctrl+Keypad/ restore text size to normal

Ctrl+Keypad* expand or contract a fold point

Ctrl+Tab cycle through recent files

Tab indent block
Shift+Tab dedent block

Ctrl+BackSpace delete to start of word
Ctrl+Delete delete to end of word
Ctrl+Shift+BackSpace delete to start of line
Ctrl+Shift+Delete delete to end of line

Ctrl+Home go to start of document; Shift extends selection
Ctrl+End go to end of document; Shift extends selection
Alt+Home go to start of display line; Shift extends selection
Alt+End go to end of display line; Shift extends selection

14

Ctrl+F2 create or delete a bookmark
F2 go to next bookmark

Ctrl+F3 find selection
Ctrl+Shift+F3 find selection backwards

Ctrl+Up scroll up
Ctrl+Down scroll down

Ctrl+C copy selection to buffer
Ctrl+V insert content of buffer
Ctrl+X copy selection to buffer and delete selection

Ctrl+L line cut
Ctrl+Shift+T line copy
Ctrl+Shift+L line delete
Ctrl+T line transpose with previous
Ctrl+D line duplicate

Ctrl+K find matching preprocessor conditional, skipping nested ones
Ctrl+Shift+K select to matching preprocessor conditional
Ctrl+J find matching preprocessor conditional backwards, skipping nested ones
Ctrl+Shift+J select to matching preprocessor conditional backwards

Ctrl+[previous paragraph; Shift extends selection
Ctrl+] next paragraph; Shift extends selection
Ctrl+Left previous word; Shift extends selection
Ctrl+Right next word; Shift extends selection
Ctrl+/ previous word part; Shift extends selection
Ctrl+ next word part; Shift extends selection

10 Affiliation

author Hans Hagen
copyright PRAGMA ADE, Hasselt NL
more info www.pragma-ade.com

keybinding meaning (taken from the Scite help file)

Ctrl+Keypad+ magnify text size
Ctrl+Keypad- reduce text size
Ctrl+Keypad/ restore text size to normal

Ctrl+Keypad* expand or contract a fold point

Ctrl+Tab cycle through recent files

Tab indent block
Shift+Tab dedent block

Ctrl+BackSpace delete to start of word
Ctrl+Delete delete to end of word
Ctrl+Shift+BackSpace delete to start of line
Ctrl+Shift+Delete delete to end of line

Ctrl+Home go to start of document; Shift extends selection
Ctrl+End go to end of document; Shift extends selection
Alt+Home go to start of display line; Shift extends selection
Alt+End go to end of display line; Shift extends selection

Ctrl+F2 create or delete a bookmark
F2 go to next bookmark

Ctrl+F3 find selection
Ctrl+Shift+F3 find selection backwards

Ctrl+Up scroll up
Ctrl+Down scroll down

Ctrl+C copy selection to buffer
Ctrl+V insert content of buffer
Ctrl+X copy selection to buffer and delete selection

Ctrl+L line cut
Ctrl+Shift+T line copy
Ctrl+Shift+L line delete
Ctrl+T line transpose with previous
Ctrl+D line duplicate

Ctrl+K find matching preprocessor conditional, skipping nested ones
Ctrl+Shift+K select to matching preprocessor conditional
Ctrl+J find matching preprocessor conditional backwards, skipping nested ones
Ctrl+Shift+J select to matching preprocessor conditional backwards

Ctrl+[previous paragraph; Shift extends selection
Ctrl+] next paragraph; Shift extends selection
Ctrl+Left previous word; Shift extends selection
Ctrl+Right next word; Shift extends selection
Ctrl+/ previous word part; Shift extends selection
Ctrl+ next word part; Shift extends selection

