
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

lowlevel

1

Contents

2 Conditionals 6

2.1 Preamble 7

2.2 TEX primitives 12

2.3 𝜀-TEX primitives 19

2.4 LuaTEX primitives 22

2.5 LuaMetaTEX primitives 26

2.6 For the brave 30

2.7 Relaxing 32

3 Boxes 35

3.1 Introduction 36

3.2 Boxes 36

3.3 TEX primitives 37

3.4 𝜀-TEX primitives 40

3.5 LuaTEX primitives 40

3.6 LuaMetaTEX primitives 41

3.7 Splitting 49

4 Expansion 55

4.1 Preamble 56

4.2 TEX primitives 56

4.3 𝜀-TEX primitives 61

4.4 LuaTEX primitives 63

4.5 LuaMetaTEX primitives 64

4.6 Dirty tricks 74

5 Registers 77

5.1 Preamble 78

5.2 TEX primitives 78

5.3 𝜀-TEX primitives 81

5.4 LuaTEX primitives 81

5.5 LuaMetaTEX primitives 82

6 Macros 84

6.1 Preamble 85

6.2 Definitions 85

6.3 Runaway arguments 95

6.4 Introspection 96

2

6.5 nesting 97

6.6 Prefixes 100

6.7 Arguments 102

6.8 Constants 103

7 Grouping 105

7.1 Introduction 106

7.2 Pascal 106

7.3 TEX 106

7.4 MetaPost 107

7.5 Lua 108

7.6 C 108

8 Security 110

8.1 Preamble 111

8.2 Flags 111

8.3 Complications 114

8.4 Introspection 115

9 Characters 116

9.1 Introduction 117

9.2 History 117

9.3 The heritage 118

9.4 The LMTX approach 119

10 Scope 123

10.1 Introduction 124

10.2 Registers 124

10.3 Allocation 126

10.4 Files 129

11 Paragraphs 132

11.1 Introduction 133

11.2 Paragraphs 133

11.3 Properties 137

11.4 Wrapping up 139

11.5 Hanging 140

11.6 Shapes 140

11.7 Modes 158

11.8 Leaders 158

11.9 Prevdepth 165

11.10Normalization 167

3

11.11Dirty tricks 167

12 Alignments 168

12.1 Introduction 169

12.2 Between the lines 171

12.3 Pre-, inter- and post-tab skips 173

12.4 Cell widths 176

12.5 Plugins 177

12.6 Pitfalls and tricks 180

12.7 Rows 183

12.8 Remark 186

13 Marks 187

13.1 Introduction 188

13.2 The basics 189

13.3 Migration 190

13.4 Tracing 192

13.5 High level commands 193

13.6 Pitfalls 195

14 Inserts 197

14.1 Introduction 198

14.2 The page builder 198

14.3 Inserts 200

14.4 Storing 201

14.5 Synchronizing 201

14.6 Migration 201

14.7 Callbacks 202

15 Localboxes 203

15.1 Introduction 204

15.2 The basics 204

15.3 The interface 208

15.4 The helpers 213

16 Loops 215

16.1 Introduction 216

16.2 Primitives 216

16.3 Wrappers 220

17 Tokens 223

17.1 Introduction 224

4

17.2 What are tokens 224

17.3 Some implementation details 228

17.4 Other data management 229

17.5 Macros 230

17.6 Looking at tokens 230

18 Buffers 238

18.1 Preamble 239

18.2 Encoding 239

18.3 Performance 241

18.4 Files 241

18.5 Macros 242

18.6 Token lists 243

18.7 Buffers 243

18.8 Setups 246

18.9 xml 247

18.10Lua 248

18.11Protection 248

5

Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

6

2 Conditionals

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

conditionals

7

Preamble

Contents

2.1 Preamble 7

2.2 TEX primitives 12

2.3 𝜀-TEX primitives 19

2.4 LuaTEX primitives 22

2.5 LuaMetaTEX primitives 26

2.6 For the brave 30

2.7 Relaxing 32

2.1 Preamble

2.1.1 Introduction

You seldom need the low level conditionals because there are quite some so called

support macros available in ConTEXt. For instance, when you want to compare two

values (or more accurate: sequences of tokens), you can do this:

\doifelse {foo} {bar} {

the same

} {

different

}

But if you look in the ConTEXt code, you will see that often we use primitives that start

with \if in low level macros. There are good reasons for this. First of all, it looks

familiar when you also code in other languages. Another reason is performance but

that is only true in cases where the snippet of code is expanded very often, because

TEX is already pretty fast. Using low level TEX can also be more verbose, which is not

always nice in a document source. But, the most important reason (for me) is the layout

of the code. I often let the look and feel of code determine the kind of coding. This also

relates to the syntax highlighting that I am using, which is consistent for TEX, MetaPost,

Lua, etc. and evolved over decades. If code looks bad, it probably is bad. Of course this

doesn't mean all my code looks good; you're warned. In general we can say that I often

use \if... when coding core macros, and \doifelse... macros in (document) styles

and modules.

In the sections below I will discuss the low level conditions in TEX. For the often more

convenient ConTEXt wrappers you can consult the source of the system and support

modules, the wiki and/or manuals.

8

Preamble

Some of the primitives shown here are only available in LuaTEX, and some only in Lua­

MetaTEX. We could do without them for decades but they were added to these engines

because of convenience and, more important, because then made for nicer code. Of

course there's also the fun aspect. This manual is not an invitation to use these very

low level primitives in your document source. The ones that probably make most sense

are \ifnum, \ifdim and \ifcase. The others are often wrapped into support macros

that are more convenient.

In due time I might add more examples and explanations. Also, maybe some more tests

will show up as part of the LuaMetaTEX project.

2.1.2 Number and dimensions

Numbers and dimensions are basic data types in TEX. When you enter one, a number is

just that but a dimension gets a unit. Compare:

1234

1234pt

If you also use MetaPost, you need to be aware of the fact that in that language there

are not really dimensions. The post part of the name implies that eventually a number

becomes a PostScript unit which represents a base point (bp) in TEX. When in MetaPost

you entry 1234pt you actually multiply 1234 by the variable pt. In TEX on the other

hand, a unit like pt is one of the keywords that gets parsed. Internally dimensions are

also numbers and the unit (keyword) tells the scanner what multiplier to use. When

that multiplier is one, we're talking of scaled points, with the unit sp.

\the\dimexpr 12.34pt \relax

\the\dimexpr 12.34sp \relax

\the\dimexpr 12.99sp \relax

\the\dimexpr 1234sp \relax

\the\numexpr 1234 \relax

12.34pt

0.00018pt

0.00018pt

0.01883pt

1234

When we serialize a dimension it always shows the dimension in points, unless we se­

rialize it as number.

9

Preamble

\scratchdimen1234sp

\number\scratchdimen

\the\scratchdimen

1234

0.01883pt

When a number is scanned, the first thing that is taken care of is the sign. In many

cases, when TEX scans for something specific it will ignore spaces. It will happily accept

multiple signs:

\number +123

\number +++123

\number + + + 123

\number +-+-+123

\number --123

\number ---123

123

123

123

123

123

-123

Watch how the negation accumulates. The scanner can handle decimal, hexadecimal

and octal numbers:

\number -123

\number -"123

\number -'123

-123

-291

-83

A dimension is scanned like a number but this time the scanner checks for upto three

parts: an either or not signed number, a period and a fraction. Here no number means

zero, so the next is valid:

\the\dimexpr . pt \relax

\the\dimexpr 1. pt \relax

\the\dimexpr .1pt \relax

10

Preamble

\the\dimexpr 1.1pt \relax

0.0pt

1.0pt

0.1pt

1.1pt

Again we can use hexadecimal and octal numbers but when these are entered, there

can be no fractional part.

\the\dimexpr 16 pt \relax

\the\dimexpr "10 pt \relax

\the\dimexpr '20 pt \relax

16.0pt

16.0pt

16.0pt

The reason for discussing numbers and dimensions here is that there are cases where

when TEX expects a number it will also accept a dimension. It is good to know that for

instance a macro defined with \chardef or \mathchardef also is treated as a number.

Even normal characters can be numbers, when prefixed by a ` (backtick).

The maximum number in TEX is 2147483647 so we can do this:

\scratchcounter2147483647

but not this

\scratchcounter2147483648

as it will trigger an error. A dimension can be positive and negative so there we can do

at most:

\scratchdimen 1073741823sp

\scratchdimen1073741823sp

\number\scratchdimen

\the\scratchdimen

\scratchdimen16383.99998pt

\number\scratchdimen

\the\scratchdimen

1073741823

11

Preamble

16383.99998pt

1073741823

16383.99998pt

We can also do this:

\scratchdimen16383.99999pt

\number\scratchdimen

\the\scratchdimen

1073741823

16383.99998pt

but the next one will fail:

\scratchdimen16383.9999999pt

Just keep in mind that TEX scans both parts as number so the error comes from checking

if those numbers combine well.

\ifdim 16383.99999 pt = 16383.99998 pt the same \else different \fi

\ifdim 16383.999979 pt = 16383.999980 pt the same \else different \fi

\ifdim 16383.999987 pt = 16383.999991 pt the same \else different \fi

Watch the difference in dividing, the / rounds, while the : truncates.

the same

the same

the same

You need to be aware of border cases, although in practice they never really are a

problem:

\ifdim \dimexpr16383.99997 pt/2\relax = \dimexpr 16383.99998 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr16383.99997 pt:2\relax = \dimexpr 16383.99998 pt:2\relax

the same \else different

\fi

different

the same

\ifdim \dimexpr1.99997 pt/2\relax = \dimexpr 1.99998 pt/2\relax

12

TEX primitives

the same \else different

\fi

\ifdim \dimexpr1.99997 pt:2\relax = \dimexpr 1.99998 pt:2\relax

the same \else different

\fi

different

the same

\ifdim \dimexpr1.999999 pt/2\relax = \dimexpr 1.9999995 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr1.999999 pt:2\relax = \dimexpr 1.9999995 pt:2\relax

the same \else different

\fi

the same

the same

This last case demonstrates that at some point the digits get dropped (still assuming

that the fraction is within the maximum permitted) so these numbers then are the same.

Anyway, this is not different in other programming languages and just something you

need to be aware of.

2.2 TEX primitives

2.2.1 \if

I seldom use this one. Internally TEX stores (and thinks) in terms of tokens. If you see

for instance \def or \dimen or \hbox these all become tokens. But characters like A or

@ also become tokens. In this test primitive all non-characters are considered to be the

same. In the next examples this is demonstrated.

[\if AB yes\else nop\fi]

[\if AA yes\else nop\fi]

[\if CDyes\else nop\fi]

[\if CCyes\else nop\fi]

[\if\dimen\font yes\else nop\fi]

[\if\dimen\font yes\else nop\fi]

13

TEX primitives

Watch how spaces after the two characters are kept: [nop] [yes] [nop] [yes] [yes] [yes].

This primitive looks at the next two tokens but when doing so it expands. Just look at

the following:

\def\AA{AA}%

\def\AB{AB}%

[\if\AA yes\else nop\fi]

[\if\AB yes\else nop\fi]

We get: [yes] [nop].

2.2.2 \ifcat

In TEX characters (in the input) get interpreted according to their so called catcodes.

The most common are letters (alphabetic) and and other (symbols) but for instance the

backslash has the property that it starts a command, the dollar signs trigger mathmode,

while the curly braced deal with grouping. If for instance either or not the ampersand

is special (for instance as column separator in tables) depends on the macro package.

[\ifcat AB yes\else nop\fi]

[\ifcat AA yes\else nop\fi]

[\ifcat CDyes\else nop\fi]

[\ifcat CCyes\else nop\fi]

[\ifcat C1yes\else nop\fi]

[\ifcat\dimen\font yes\else nop\fi]

[\ifcat\dimen\font yes\else nop\fi]

This time we also compare a letter with a number: [yes] [yes] [yes] [yes] [nop] [yes]

[yes]. In that case the category codes differ (letter vs other) but in this test comparing

the letters result in a match. This is a test that is used only once in ConTEXt and even

that occasion is dubious and will go away.

You can use \noexpand to prevent expansion:

\def\A{A}%

\let\B B%

\def\C{D}%

\let\D D%

[\ifcat\noexpand\A Ayes\else nop\fi]

[\ifcat\noexpand\B Byes\else nop\fi]

[\ifcat\noexpand\C Cyes\else nop\fi]

[\ifcat\noexpand\C Dyes\else nop\fi]

14

TEX primitives

[\ifcat\noexpand\D Dyes\else nop\fi]

We get: [nop] [yes] [nop] [nop] [yes], so who still thinks that TEX is easy to understand

for a novice user?

2.2.3 \ifnum

This condition compares its argument with another one, separated by an <, = or > char­

acter.

\ifnum\scratchcounter<0

less than

\else\ifnum\scratchcounter>0

more than

\else

equal to

\fi zero

This is one of these situations where a dimension can be used instead. In that case the

dimension is in scaled points.

\ifnum\scratchdimen<0

less than

\else\ifnum\scratchdimen>0

more than

\else

equal to

\fi zero

Of course this equal treatment of a dimension and number is only true when the dimen­

sion is a register or box property.

2.2.4 \ifdim

This condition compares one dimension with another one, separated by an <, = or >

sign.

\ifdim\scratchdimen<0pt

less than

\else\ifdim\scratchdimen>0pt

more than

\else

15

TEX primitives

equal to

\fi zero

While when comparing numbers a dimension is a valid quantity but here you cannot

mix them: something with a unit is expected.

2.2.5 \ifodd

This one can come in handy, although in ConTEXt it is only used in checking for an odd

of even page number.

\scratchdimen 3sp

\scratchcounter4

\ifodd\scratchdimen very \else not so \fi odd

\ifodd\scratchcounter very \else not so \fi odd

As with the previously discussed \ifnum you can use a dimension variable too, which is

then interpreted as representing scaled points. Here we get:

very odd

not so odd

2.2.6 \ifvmode

This is a rather trivial check. It takes no arguments and just is true when we're in

vertical mode. Here is an example:

\hbox{\ifvmode\else\par\fi\ifvmode v\else h\fi mode}

We're always in horizontal mode and issuing a \par inside a horizontal box doesn't

change that, so we get: hmode.

2.2.7 \ifhmode

As with \ifvmode this one has no argument and just tells if we're in vertical mode.

\vbox {

\noindent \ifhmode h\else v\fi mode

\par

\ifhmode h\else \noindent v\fi mode

}

16

TEX primitives

You can use it for instance to trigger injection of code, or prevent that some content (or

command) is done more than once:

hmode

vmode

2.2.8 \ifmmode

Math is something very TEX so naturally you can check if you're in math mode. here is

an example of using this test:

\def\enforcemath#1{\ifmmode#1\else$ #1 $\fi}

Of course in reality macros that do such things are more advanced than this one.

2.2.9 \ifinner

\def\ShowMode

{\ifhmode \ifinner inner \fi hmode

\else\ifvmode \ifinner inner \fi vmode

\else\ifmmode \ifinner inner \fi mmode

\else \ifinner inner \fi unset

\fi\fi\fi}

\ShowMode \ShowMode

\vbox{\ShowMode}

\hbox{\ShowMode}

\ShowMode

$$\ShowMode$$

The first line has two tests, where the first one changes the mode to horizontal simply

because a text has been typeset. Watch how display math is not inner.

vmode hmode

inner vmode

inner hmode

𝑖𝑛𝑛𝑒𝑟𝑚𝑚𝑜𝑑𝑒
𝑖𝑛𝑛𝑒𝑟𝑚𝑚𝑜𝑑𝑒

17

TEX primitives

By the way, moving the \ifinner test outside the branches (to the top of the macro)

won't work because once the word inner is typeset we're no longer in vertical mode, if

we were at all.

2.2.10 \ifvoid

A box is one of the basic concepts in TEX. In order to understand this primitive we

present four cases:

\setbox0\hbox{} \ifvoid0 void \else content \fi

\setbox0\hbox{123} \ifvoid0 void \else content \fi

\setbox0\hbox{} \box0 \ifvoid0 void \else content \fi

\setbox0\hbox to 10pt{} \ifvoid0 void \else content \fi

In the first case, we have a box which is empty but it's not void. It helps to know that

internally an hbox is actually an object with a pointer to a linked list of nodes. So, the

first two can be seen as:

hlist -> [nothing]

hlist -> 1 -> 2 -> 3 -> [nothing]

but in any case there is a hlist. The third case puts something in a hlist but then flushes

it. Now we have not even the hlist any more; the box register has become void. The

last case is a variant on the first. It is an empty box with a given width. The outcome

of the four lines (with a box flushed in between) is:

content

content

void

content

So, when you want to test if a box is really empty, you need to test also its dimensions,

which can be up to three tests, depending on your needs.

\setbox0\emptybox \ifvoid0 void\else content\fi

\setbox0\emptybox \wd0=10pt \ifvoid0 void\else content\fi

\setbox0\hbox to 10pt {} \ifvoid0 void\else content\fi

\setbox0\hbox {} \wd0=10pt \ifvoid0 void\else content\fi

Setting a dimension of a void voix (empty) box doesn't make it less void:

void

18

TEX primitives

void

content

content

2.2.11 \ifhbox

This test takes a box number and gives true when it is an hbox.

2.2.12 \ifvbox

This test takes a box number and gives true when it is an vbox. Both a \vbox and \vtop

are vboxes, the difference is in the height and depth and the baseline. In a \vbox the

last line determines the baseline

vbox or vtop

vtop or vbox

And in a \vtop the first line takes control:

vbox or vtop

vtop or vbox

but, once wrapped, both internally are just vlists.

2.2.13 \ifx

This test is actually used a lot in ConTEXt: it compares two token(list)s:

\ifx a b Y\else N\fi

\ifx ab Y\else N\fi

\def\A {a}\def\B{b}\ifx \A\B Y\else N\fi

\def\A{aa}\def\B{a}\ifx \A\B Y\else N\fi

\def\A {a}\def\B{a}\ifx \A\B Y\else N\fi

Here the result is: “NNNNY”. It does not expand the content, if you want that you need

to use an \edef to create two (temporary) macros that get compared, like in:

\edef\TempA{...}\edef\TempB{...}\ifx\TempA\TempB ...\else ...\fi

19

𝜀-TEX primitives

2.2.14 \ifeof

This test checks if a the pointer in a given input channel has reached its end. It is

also true when the file is not present. The argument is a number which relates to the

\openin primitive that is used to open files for reading.

2.2.15 \iftrue

It does what it says: always true.

2.2.16 \iffalse

It does what it says: always false.

2.2.17 \ifcase

The general layout of an \ifcase tests is as follows:

\ifcase<number>

when zero

\or

when one

\or

when two

\or

...

\else

when something else

\fi

As in other places a number is a sequence of signs followed by one of more digits

2.3 𝜀-TEX primitives

2.3.1 \ifdefined

This primitive was introduced for checking the existence of a macro (or primitive) and

with good reason. Say that you want to know if \MyMacro is defined? One way to do

that is:

20

𝜀-TEX primitives

\ifx\MyMacro\undefined

{\bf undefined indeed}

\fi

This results in: undefined indeed, but is this macro really undefined? When TEX scans

your source and sees a the escape character (the forward slash) it will grab the next

characters and construct a control sequence from it. Then it finds out that there is

nothing with that name and it will create a hash entry for a macro with that name but

with no meaning. Because \undefined is also not defined, these two macros have the

samemeaning and therefore the \ifx is true. Imagine that you do this many times, with

different macro names, then your hash can fill up. Also, when a user defined \undefined

you're suddenly get a different outcome.

In order to catch the last problem there is the option to test directly:

\ifdefined\MyOtherMacro \else

{\bf also undefined}

\fi

This (or course) results in: also undefined, but the macro is still sort of defined (with

no meaning). The next section shows how to get around this.

2.3.2 \ifcsname

A macro is often defined using a ready made name, as in:

\def\OhYes{yes}

The name is made from characters with catcode letter which means that you cannot use

for instance digits or underscores unless you also give these characters that catcode,

which is not that handy in a document. You can however use \csname to define a control

sequence with any character in the name, like:

\expandafter\def\csname Oh Yes : 1\endcsname{yes}

Later on you can get this one with \csname:

\csname Oh Yes : 1\endcsname

However, if you say:

\csname Oh Yes : 2\endcsname

21

𝜀-TEX primitives

you won't get some result, nor a message about an undefined control sequence, but

the name triggers a define anyway, this time not with no meaning (undefined) but as

equivalent to \relax, which is why

\expandafter\ifx\csname Oh Yes : 2\endcsname\relax

{\bf relaxed indeed}

\fi

is the way to test its existence. As with the test in the previous section, this can deplete

the hash when you do lots of such tests. The way out of this is:

\ifcsname Oh Yes : 2\endcsname \else

{\bf unknown indeed}

\fi

This time there is no hash entry created and therefore there is not even an undefined

control sequence.

In LuaTEX there is an option to return false in case of a messy expansion during this

test, and in LuaMetaTEX that is default. This means that tests can be made quite robust

as it is pretty safe to assume that names that make sense are constructed from regular

characters and not boxes, font switches, etc.

2.3.3 \iffontchar

This test was also part of the 𝜀-TEX extensions and it can be used to see if a font has a

character.

\iffontchar\font`A

{\em This font has an A!}

\fi

And, as expected, the outcome is: “This font has an A!”. The test takes two arguments,

the first being a font identifier and the second a character number, so the next checks

are all valid:

\iffontchar\font `A yes\else nop\fi\par

\iffontchar\nullfont `A yes\else nop\fi\par

\iffontchar\textfont0`A yes\else nop\fi\par

In the perspective of LuaMetaTEX I considered also supporting \fontid but it got a bit

messy due to the fact that this primitive expands in a different way so this extension

was rejected.

22

LuaTEX primitives

2.3.4 \unless

You can negate the results of a test by using the \unless prefix, so for instance you can

replace:

\ifdim\scratchdimen=10pt

\dosomething

\else\ifdim\scratchdimen<10pt

\dosomething

\fi\fi

by:

\unless\ifdim\scratchdimen>10pt

\dosomething

\fi

2.4 LuaTEX primitives

2.4.1 \ifincsname

As it had no real practical usage uit might get dropped in LuaMetaTEX, so it will not be

discussed here.

2.4.2 \ifprimitive

As it had no real practical usage due to limitations, this one is not available in LuaMeta­

TEX so it will not be discussed here.

2.4.3 \ifabsnum

This test is inherited from pdfTEX and behaves like \ifnum but first turns a negative

number into a positive one.

2.4.4 \ifabsdim

This test is inherited from pdfTEX and behaves like \ifdim but first turns a negative

dimension into a positive one.

23

LuaTEX primitives

2.4.5 \ifcondition

This is not really a test but in order to unstand that you need to know how TEX internally

deals with tests.

\ifdimen\scratchdimen>10pt

\ifdim\scratchdimen<20pt

result a

\else

result b

\fi

\else

result c

\fi

When we end up in the branch of “result a” we need to skip two \else branches after

we're done. The \if.. commands increment a level while the \fi decrements a level.

The \else needs to be skipped here. In other cases the true branch needs to be skipped

till we end up a the right \else. When doing this skipping, TEX is not interested in what

it encounters beyond these tokens and this skipping (therefore) goes real fast but it

does see nested conditions and doesn't interpret grouping related tokens.

A side effect of this is that the next is not working as expected:

\def\ifmorethan{\ifdim\scratchdimen>}

\def\iflessthan{\ifdim\scratchdimen<}

\ifmorethan10pt

\iflessthan20pt

result a

\else

result b

\fi

\else

result c

\fi

The \iflessthan macro is not seen as an \if... so the nesting gets messed up. The

solution is to fool the scanner in thinking that it is. Say we have:

\scratchdimen=25pt

\def\ifmorethan{\ifdim\scratchdimen>}

24

LuaTEX primitives

\def\iflessthan{\ifdim\scratchdimen<}

and:

\ifcondition\ifmorethan10pt

\ifcondition\iflessthan20pt

result a

\else

result b

\fi

\else

result c

\fi

When we expand this snippet we get: “result b” and no error concerning a failure

in locating the right \fi's. So, when scanning the \ifcondition is seen as a valid

\if... but when the condition is really expanded it gets ignored and the \ifmorethan

has better come up with a match or not.

In this perspective it is also worth mentioning that nesting problems can be avoided

this way:

\def\WhenTrue {something \iftrue ...}

\def\WhenFalse{something \iffalse ...}

\ifnum\scratchcounter>123

\let\next\WhenTrue

\else

\let\next\WhenFalse

\fi

\next

This trick is mentioned in The TEXbook and can also be found in the plain TEX format.

A variant is this:

\ifnum\scratchcounter>123

\expandafter\WhenTrue

\else

\expandafter\WhenFalse

\fi

but using \expandafter can be quite intimidating especially when there are multiple

in a row. It can also be confusing. Take this: an \ifcondition expects the code that

follows to produce a test. So:

25

LuaTEX primitives

\def\ifwhatever#1%

{\ifdim#1>10pt

\expandafter\iftrue

\else

\expandafter\iffalse

\fi}

\ifcondition\ifwhatever{10pt}

result a

\else

result b

\fi

This will not work! The reason is in the already mentioned fact that when we end up

in the greater than 10pt case, the scanner will happily push the \iftrue after the \fi,

which is okay, but when skipping over the \else it sees a nested condition without

matching \fi, which makes ity fail. I will spare you a solution with lots of nasty tricks,

so here is the clean solution using \ifcondition:

\def\truecondition {\iftrue}

\def\falsecondition{\iffalse}

\def\ifwhatever#1%

{\ifdim#1>10pt

\expandafter\truecondition

\else

\expandafter\falsecondition

\fi}

\ifcondition\ifwhatever{10pt}

result a

\else

result b

\fi

It will be no surprise that the two macros at the top are predefined in ConTEXt. It

might be more of a surprise that at the time of this writing the usage in ConTEXt of this

\ifcondition primitive is rather minimal. But that might change.

As a further teaser I'll show another simple one,

\def\HowOdd#1{\unless\ifnum\numexpr ((#1):2)*2\relax=\numexpr#1\relax}

26

LuaMetaTEX primitives

\ifcondition\HowOdd{1}very \else not so \fi odd

\ifcondition\HowOdd{2}very \else not so \fi odd

\ifcondition\HowOdd{3}very \else not so \fi odd

This renders:

very odd

not so odd

very odd

The code demonstrates several tricks. First of all we use \numexpr which permits more

complex arguments, like:

\ifcondition\HowOdd{4+1}very \else not so \fi odd

\ifcondition\HowOdd{2\scratchcounter+9}very \else not so \fi odd

Another trick is that we use an integer division (the :) which is an operator supported

by LuaMetaTEX.

2.5 LuaMetaTEX primitives

2.5.1 \ifcmpnum

This one is part of s set of three tests that all are a variant of a \ifcase test. A simple

example of the first test is this:

\ifcmpnum 123 345 less \or equal \else more \fi

The test scans for two numbers, which of course can be registers or expressions, and

sets the case value to 0, 1 or 2, which means that you then use the normal \or and

\else primitives for follow up on the test.

2.5.2 \ifchknum

This test scans a number and when it's okay sets the case value to 1, and otherwise to

2. So you can do the next:

\ifchknum 123\or good \else bad \fi

\ifchknum bad\or good \else bad \fi

An error message is suppressed and the first \or can be seen as a sort of recovery

token, although in fact we just use the fast scanner mode that comes with the \ifcase:

because the result is 1 or 2, we never see invalid tokens.

27

LuaMetaTEX primitives

2.5.3 \ifnumval

A sort of combination of the previous two is \ifnumval which checks a number but also

if it's less, equal or more than zero:

\ifnumval 123\or less \or equal \or more \else error \fi

\ifnumval bad\or less \or equal \or more \else error \fi

You can decide to ignore the bad number or do something that makes more sense. Often

the to be checked value will be the content of a macro or an argument like #1.

2.5.4 \ifcmpdim

This test is like \ifcmpnum but for dimensions.

2.5.5 \ifchkdim

This test is like \ifchknum but for dimensions. The last checked value is available as

\lastchknum.

2.5.6 \ifdimval

This test is like \ifnumval but for dimensions. The last checked value is available as

\lastchkdim

2.5.7 \iftok

Although this test is still experimental it can be used. What happens is that two to be

compared ‘things’ get scanned for. For each we first gobble spaces and \relax tokens.

Then we can have several cases:

1. When we see a left brace, a list of tokens is scanned upto the matching right brace.

2. When a reference to a token register is seen, that register is taken as value.

3. When a reference to an internal token register is seen, that register is taken as value.

4. When a macro is seen, its definition becomes the to be compared value.

5. When a number is seen, the value of the corresponding register is taken

An example of the first case is:

\iftok {abc} {def}%

...

28

LuaMetaTEX primitives

\else

...

\fi

The second case goes like this:

\iftok\scratchtoksone\scratchtokstwo

...

\else

...

\fi

Case one and four mixed:

\iftok{123}\TempX

...

\else

...

\fi

The last case is more a catch: it will issue an error when no number is given. Eventually

that might become a bit more clever (depending on our needs.)

2.5.8 \ifcstok

There is a subtle difference between this one and iftok: spaces and \relax tokens are

skipped but nothing gets expanded. So, when we arrive at the to be compared ‘things’

we look at what is there, as-is.

2.5.9 \iffrozen

This is an experimental test. Commands can be defined with the \frozen prefix and

this test can be used to check if that has been the case.

2.5.10 \ifprotected

Commands can be defined with the \protected prefix (or in ConTEXt, for historic rea­

sons, with \unexpanded) and this test can be used to check if that has been the case.

2.5.11 \ifusercmd

This is an experimental test. It can be used to see if the command is defined at the user

level or is a build in one. This one might evolve.

29

LuaMetaTEX primitives

2.5.12 \ifarguments

This conditional can be used to check how many arguments were matched. It only

makes sense when used with macros defined with the \tolerant prefix and/or when

the sentinel \ignorearguments after the arguments is used. More details can be found

in the lowlevel macros manual.

2.5.13 \orelse

This it not really a test primitive but it does act that way. Say that we have this:

\ifdim\scratchdimen>10pt

case 1

\else\ifdim\scratchdimen<20pt

case 2

\else\ifcount\scratchcounter>10

case 3

\else\ifcount\scratchcounter<20

case 4

\fi\fi\fi\fi

A bit nicer looks this:

\ifdim\scratchdimen>10pt

case 1

\orelse\ifdim\scratchdimen<20pt

case 2

\orelse\ifcount\scratchcounter>10

case 3

\orelse\ifcount\scratchcounter<20

case 4

\fi

We stay at the same level. Sometimes a more flat test tree had advantages but if you

think that it gives better performance then you will be disappointed. The fact that we

stay at the same level is compensated by a bit more parsing, so unless you have millions

such cases (or expansions) it might make a bit of a difference. As mentioned, I'm a bit

sensitive for how code looks so that was the main motivation for introducing it. There

is a companion \orunless continuation primitive.

A rather neat trick is the definition of \quitcondition:

30

For the brave

\def\quitcondition{\orelse\iffalse}

This permits:

\ifdim\scratchdimen>10pt

case 1a

\quitcondition

case 4b

\fi

where, of course, the quitting normally is the result of some intermediate extra test.

But let me play safe here: beware of side effects.

2.6 For the brave

2.6.1 Full expansion

If you don't understand the following code, don't worry. There is seldom much reason

to go this complex but obscure TEX code attracts some users so . . .

When you have a macro that has for instance assignments, and when you expand that

macro inside an \edef, these assignments are not actually expanded but tokenized. In

LuaMetaTEX there is a way to apply these assignments without side effects and that

feature can be used to write a fully expandable user test. For instance:

\def\truecondition {\iftrue}

\def\falsecondition{\iffalse}

\def\fontwithidhaschar#1#2%

{\beginlocalcontrol

\scratchcounter\numexpr\fontid\font\relax

\setfontid\numexpr#1\relax

\endlocalcontrol

\iffontchar\font\numexpr#2\relax

\beginlocalcontrol

\setfontid\scratchcounter

\endlocalcontrol

\expandafter\truecondition

\else

\expandafter\falsecondition

\fi}

31

For the brave

The \iffontchar test doesn't handle numeric font id, simply because at the time it was

added to 𝜀-TEX, there was no access to these id's. Now we can do:

\edef\foo{\fontwithidhaschar{1} {75}yes\else nop\fi} \meaning\foo

\edef\foo{\fontwithidhaschar{1}{999}yes\else nop\fi} \meaning\foo

[\ifcondition\fontwithidhaschar{1} {75}yes\else nop\fi]

[\ifcondition\fontwithidhaschar{1}{999}yes\else nop\fi]

These result in:

macro:yes

macro:nop

[yes]

[nop]

If you remove the \immediateassignment in the definition above then the typeset re­

sults are still the same but the meanings of \foo look different: they contain the assign­

ments and the test for the character is actually done when constructing the content of

the \edef, but for the current font. So, basically that test is now useless.

2.6.2 User defined if's

There is a \newif macro that defines three other macros:

\newif\ifOnMyOwnTerms

After this, not only \ifOnMyOwnTerms is defined, but also:

\OnMyOwnTermstrue

\OnMyOwnTermsfalse

These two actually are macros that redefine \ifOnMyOwnTerms to be either equivalent

to \iftrue and \iffalse. The (often derived from plain TEX) definition of \newif is a

bit if a challenge as it has to deal with removing the if in order to create the two extra

macros and also make sure that it doesn't get mixed up in a catcode jungle.

In ConTEXt we have a variant:

\newconditional\MyConditional

that can be used with:

32

Relaxing

\settrue\MyConditional

\setfalse\MyConditional

and tested like:

\ifconditional\MyConditional

...

\else

...

\fi

This one is cheaper on the hash and doesn't need the two extra macros per test. The

price is the use of \ifconditional, which is not to confused with \ifcondition (it has

bitten me already a few times).

2.7 Relaxing

When TEX scans for a number or dimension it has to check tokens one by one. On the

case of a number, the scanning stops when there is no digit, in the case of a dimension

the unit determine the end of scanning. In the case of a number, when a token is not a

digit that token gets pushed back. When digits are scanned a trailing space or \relax

is pushed back. Instead of a number of dimension made from digits, periods and units,

the scanner also accepts registers, both the direct accessors like \count and \dimen

and those represented by one token. Take these definitions:

\newdimen\MyDimenA \MyDimenA=1pt \dimen0=\MyDimenA

\newdimen\MyDimenB \MyDimenB=2pt \dimen2=\MyDimenB

I will use these to illustrate the side effects of scanning. Watch the spaces in the result.

First I show what effect we want to avoid. When second argument contains a number

(digits) the zero will become part of it so we actually check \dimen00 here.

\def\whatever#1#2%

{\ifdim#1=#20\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

33

Relaxing

The solution is to add a space but watch how that one can end up in the result:

\def\whatever#1#2%

{\ifdim#1=#2 0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

A variant is using \relax and this time we get this token retained in the output.

\def\whatever#1#2%

{\ifdim#1=#2\relax0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:\relax 0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:\relax 0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

A solution that doesn't have side effects of forcing the end of a number (using a space or

\relax is one where we use expressions. The added overhead of scanning expressions

is taken for granted because the effect is what we like:

\def\whatever#1#2%

{\ifdim\dimexpr#1\relax=\dimexpr#2\relax0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

Just for completeness we show a more obscure trick: this one hides assignments to

temporary variables. Although performance is okay, it is the least efficient one so far.

\def\whatever#1#2%

{\beginlocalcontrol

34

Colofon

\MyDimenA#1\relax

\MyDimenB#2\relax

\endlocalcontrol

\ifdim\MyDimenA=\MyDimenB0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

It is kind of a game to come up with alternatives but for sure those involve dirty tricks

and more tokens (and runtime). The next can be considered a dirty trick too: we use a

special variant of \relax. When a number is scanned it acts as relax, but otherwise it

just is ignored and disappears.

\def\whatever#1#2%

{\ifdim#1=#2\norelax0\else1\fi}

\whatever{1pt}{2pt} [macro:1]

\whatever{1pt}{1pt} [macro:0]

\whatever{\dimen 0}{\dimen 2} [macro:1]

\whatever{\dimen 0}{\dimen 0} [macro:0]

\whatever\MyDimenA\MyDimenB [macro:1]

\whatever\MyDimenA\MyDimenB [macro:1]

2.7 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

35

3 Boxes

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

boxes

36

Introduction

Contents

3.1 Introduction 36

3.2 Boxes 36

3.3 TEX primitives 37

3.4 𝜀-TEX primitives 40

3.5 LuaTEX primitives 40

3.6 LuaMetaTEX primitives 41

3.7 Splitting 49

3.1 Introduction

An average ConTEXt user will not use the low level box primitives but a basic under­

standing of how TEX works doesn't hurt. In fact, occasionally using a box command

might bring a solution not easily achieved otherwise, simply because a more high level

interface can also be in the way.

The best reference is of course The TEXbook so if you're really interested in the details

you should get a copy of that book. Below I will not go into details about all kind of

glues, kerns and penalties, just boxes it is.

This explanation will be extended when I feel the need (or users have questions that

can be answered here).

3.2 Boxes

This paragraph of text is made from lines that contain words that themselves contain

symbolic representations of characters. Each line is wrapped in a so called horizontal

box and eventually those lines themselves get wrapped in what we call a vertical box.

When we expose some details of a paragraph it looks like this:

This is a rather narrowH__

paragraph blown up aH__

bit. Here we use a flushH__

left, aka ragged right,H__

approach.H____V

LH:0.000
LS:0.000IL:0.000IN:0.000ThisSP:3.497isSP:3.497aSP:3.497ratherSP:3.497narrowIR:0.000RS:13.685

RH:0.000H__VP:2000BS:7.473

LH:0.000
LS:0.000
paragraphSP:3.497blownSP:3.497upSP:3.497a

RS:19.008
RH:0.000H__BS:5.185

LH:0.000
LS:0.000
bit.XS:5.500HereSP:3.497weSP:3.497useSP:3.497aSP:3.497flush

RS:7.557
RH:0.000H__BS:7.473

LH:0.000
LS:0.000
left,SP:3.497akaSP:3.497raggedSP:3.497right,

RS:19.706
RH:0.000H__VP:2000BS:5.185

LH:0.000
LS:0.000PL:0.000approach.HP:10000PR:86.442 RS:0.000

RH:0.000H____V

37

TEX primitives

The left only shows the boxes, the variant at the right shows (font) kerns and glue too.

Because we flush left, there is rather strong right skip glue at the right boundary of the

box. If font kerns show up depends on the font, not all fonts have them (or have only a

few). The glyphs themselves are also kind of boxed, as their dimensions determine the

area that they occupy:

This is a rather ...
But, internally they are not really boxed, as they already are a single quantity. The same

is true for rules: they are just blobs with dimensions. A box on the other hand wraps

a linked list of so called nodes: glyphs, kerns, glue, penalties, rules, boxes, etc. It is a

container with properties like width, height, depth and shift.

3.3 TEX primitives

The box model is reflected in TEX's user interface but not by that many commands, most

noticeably \hbox, \vbox and \vtop. Here is an example of the first one:

\hbox width 10cm{text}

\hbox width 10cm height 1cm depth 5mm{text}

text \raise5mm\hbox{text} text

The \raise and \lower commands behave the same but in opposite directions. One

could as well have been defined in terms of the other.

text \raise 5mm \hbox to 2cm {text}

text \lower -5mm \hbox to 2cm {text}

text \raise -5mm \hbox to 2cm {text}

text \lower 5mm \hbox to 2cm {text}

text

textH__

text

textH__

text

textH__

text

textH__

A box can be moved to the left or right but, believe it or not, in ConTEXt we never use

that feature, probably because the consequences for the width are such that we can as

well use kerns. Here are some examples:

text \vbox{\moveleft 5mm \hbox {left}}text !

text \vbox{\moveright 5mm \hbox{right}}text !

38

TEX primitives

textlefttext ! text righttext !

text \vbox{\moveleft 25mm \hbox {left}}text !

text \vbox{\moveright 25mm \hbox{right}}text !

textleft text ! text righttext !

Code like this will produce a complaint about an underfull box but we can easily get

around that:

text \raise 5mm \hbox to 2cm {\hss text}

text \lower -5mm \hbox to 2cm {text\hss}

text \raise -5mm \hbox to 2cm {\hss text}

text \lower 5mm \hbox to 2cm {text\hss}

The \hss primitive injects a glue that when needed will fill up the available space. So,

here we force the text to the right or left.

text

textH__

text

textH__

text

textH__

text

textH__

Instead of \raise you can also provide the shift (up or down) with a keyword:

\ruledhbox\bgroup

x\raise 5pt\ruledhbox {1}x

x\raise-10pt\ruledhbox {2}x

x\raise -5pt\ruledhbox shift -20pt{3}x

x\ruledhbox shift -10pt{4}x

\egroup

x1x x
2
x x

3

x x
4
x

We have three kind of boxes: \hbox, \vbox and \vtop. Actually we have a fourth type

\dbox but that is a variant on \vbox to which we come back later.

\hbox{\strut height and depth\strut}

\vbox{\hsize 4cm \strut height and depth\par and width\strut}

\vtop{\hsize 4cm \strut height and depth\par and width\strut}

A \vbox aligns at the bottom and a \vtop at the top. I have added some so called struts

to enforce a consistent height and depth. A strut is an invisible quantity (consider it a

black box) that enforces consistent line dimensions: height and depth.

39

TEX primitives

height and depthH__

height and depthH__

and widthH____V height and depthH__

and widthH__

T

You can store a box in a register but you need to be careful not to use a predefined one.

If you need a lot of boxes you can reserve some for your own:

\newbox\MySpecialBox

but normally you can do with one of the scratch registers, like 0, 2, 4, 6 or 8, for local

boxes, and 1, 3, 5, 7 and 9 for global ones. Registers are used like:

\setbox0\hbox{here}

\global\setbox1\hbox{there}

In ConTEXt you can also use

\setbox\scratchbox \hbox{here}

\setbox\scratchboxone\hbox{here}

\setbox\scratchboxtwo\hbox{here}

and some more. In fact, there are quite some predefined scratch registers (boxes, di­

mensions, counters, etc). Feel free to investigate further.

When a box is stored, you can consult its dimensions with \wd, \ht and \dp. You can of

course store them for later use.

\scratchwidth \wd\scratchbox

\scratchheight\ht\scratchbox

\scratchdepth \dp\scratchbox

\scratchtotal \dimexpr\ht\scratchbox+\dp\scratchbox\relax

\scratchtotal \htdp\scratchbox

The last line is ConTEXt specific. You can also set the dimensions

\wd\scratchbox 10cm

\ht\scratchbox 10mm

\dp\scratchbox 5mm

So you can cheat! A box is placed with \copy, which keeps the original intact or \box

which just inserts the box and then wipes the register. In practice you seldom need a

copy, which is more expensive in runtime anyway. Here we use copy because it serves

the examples.

40

𝜀-TEX primitives

\copy\scratchbox

\box \scratchbox

3.4 𝜀-TEX primitives

The 𝜀-TEX extensions don't add something relevant for boxes, apart from that you can

use the expressions mechanism to mess around with their dimensions. There is a mech­

anism for typesetting r2l within a paragraph but that has limited capabilities and doesn't

change much as it's mostly a way to trick the backend into outputting a stretch of text in

the other direction. This feature is not available in LuaTEX because it has an alternative

direction mechanism.

3.5 LuaTEX primitives

The concept of boxes is the same in LuaTEX as in its predecessors but there are some

aspects to keep in mind. When a box is typeset this happens in LuaTEX:

1. A list of nodes is constructed. In LuaTEX this is a double linked list (so that it can

easily be manipulated in Lua) but TEX itself only uses the forward links.

2. That list is hyphenated, that is: so called discretionary nodes are injected. This

depends on the language properties of the glyph (character) nodes.

3. Then ligatures are constructed, if the font has such combinations. When this built-in

mechanism is used, in ConTEXt we speak of base mode.

4. After that inter-character kerns are applied, if the font provides them. Again this is

a base mode action.

5. Finally the box gets packaged:

– In the case of a horizontal box, the list is packaged in a hlist node, basically one

liner, and its dimensions are calculated and set.

– In the case of a vertical box, the paragraph is broken into one or more lines, with­

out hyphenation, with optimal hyphenation or in the worst case with so called

emergency stretch applied, and the result becomes a vlist node with its dimen­

sions set.

In traditional TEX the first four steps are interwoven but in LuaTEX we need them split

because the step 5 can be overloaded by a callback. In that case steps 3 and 4 (and

41

LuaMetaTEX primitives

maybe 2) are probably also overloaded, especially when you bring handling of fonts

under Lua control.

New in LuaTEX are three packers: \hpack, \vpack and \tpack, which are companions

to \hbox, \vbox and \vtop but without the callbacks applied. Using them is a bit tricky

as you never know if a callback should be applied, which, because users can often add

their own Lua code, is not something predictable.

Another box related extension is direction. There are four possible directions but be­

cause in LuaMetaTEX there are only two. Because this model has been upgraded, it will

be discusses in the next section. A ConTEXt user is supposed to use the official ConTEXt

interfaces in order to be downward compatible.

3.6 LuaMetaTEX primitives

There are two possible directions: left to right (the default) and right to left for Hebrew

and Arabic. Here is an example that shows how it'd done with low level directives:

\hbox direction 0 {from left to right}

\hbox direction 1 {from right to left}

from left to right

fromrighttoleft

A low level direction switch is done with:

\hbox direction 0

{from left to right \textdirection 1 from right to left}

\hbox direction 1

{from right to left \textdirection 1 from left to right}

from left to right fromrighttoleft

fromrighttoleftfromlefttoright

but actually this is kind of not done in ConTEXt, because there you are supposed to use

the proper direction switches:

\naturalhbox {from left to right}

\reversehbox {from right to left}

\naturalhbox {from left to right \righttoleft from right to left}

\reversehbox {from right to left \lefttoright from left to right}

42

LuaMetaTEX primitives

from left to right

fromrighttoleft

from left to right fromrighttoleft

fromrighttoleftfrom left to right

Often more is needed to properly support right to left typesetting so using the ConTEXt

commands is more robust.

In LuaMetaTEX the box model has been extended a bit, this as a consequence of drop­

ping the vertical directional typesetting, which never worked well. In previous sections

we discussed the properties width, height and depth and the shift resulting from a

\raise, \lower, \moveleft and \moveright. Actually, the shift is also used in for in­

stance positioning math elements.

The way shifting influences dimensions can be somewhat puzzling. Internally, when

TEX packages content in a box there are two cases:

• When a horizontal box is made, and height - shift is larger than the maximum

height so far, that delta is taken. When depth + shift is larger than the current

depth, then that depth is adapted. So, a shift up influences the height and a shift

down influences the depth.

• In the case of vertical packaging, when width + shift is larger than the maximum

box (line) width so far, that maximum gets bumped. So, a shift to the right can

contribute, but a shift to the left cannot result in a negative width. This is also why

vertical typesetting, where height and depth are swapped with width, goes wrong:

we somehow need to map two properties onto one and conceptually TEX is really

set up for horizontal typesetting. (And it's why I decided to just remove it from the

engine.)

This is one of these cases where TEX behaves as expected but it also means that there is

some limitation to what can be manipulated. Setting the shift using one of the four com­

mands has a direct consequence when a box gets packaged which happens immediately

because the box is an argument to the foursome.

There is in traditional TEX, probably for good reason, no way to set the shift of a box,

if only because the effect would normally be none. But in LuaTEX we can cheat, and

therefore, for educational purposed ConTEXt has implements some cheats.

We use this sample box:

\setbox\scratchbox\hbox\bgroup

\middlegray\vrule width 20mm depth -.5mm height 10mm

43

LuaMetaTEX primitives

\hskip-20mm

\darkgray \vrule width 20mm height -.5mm depth 5mm

\egroup

When we mess with the shift using the ConTEXt \shiftbox helper, we see no immediate

effect. We only get the shift applied when we use another helper, \hpackbox.

\hbox\bgroup

\showstruts \strut

\quad \copy\scratchbox

\quad \shiftbox\scratchbox -20mm \copy\scratchbox

\quad \hpackbox\scratchbox \box \scratchbox

\quad \strut

\egroup

When instead we use \vpackbox we get a different result. This time we move left.

\hbox\bgroup

\showstruts \strut

\quad \copy\scratchbox

\quad \shiftbox\scratchbox -10mm \copy\scratchbox

\quad \vpackbox\scratchbox \copy\scratchbox

\quad \strut

\egroup

The shift is set via Lua and the repackaging is also done in Lua, using the low level

hpack and vpack helpers and these just happen to look at the shift when doing their

job. At the TEX end this never happens.

44

LuaMetaTEX primitives

This long exploration of shifting serves a purpose: it demonstrates that there is not

that much direct control over boxes apart from their three dimensions. However this

was never a real problem as one can just wrap a box in another one and use kerns

to move the embedded box around. But nevertheless I decided to see if the engine

can be a bit more helpful, if only because all that extra wrapping gives some overhead

and complications when we want to manipulate boxes. And of course it is also a nice

playground.

We start with changing the direction. Changing this property doesn't require repackag­

ing because directions are not really dealt with in the frontend. When a box is converted

to (for instance pdf) the reversion happens.

\setbox\scratchbox\hbox{whatever}

\the\boxdirection\scratchbox: \copy\scratchbox \crlf

\boxdirection\scratchbox 1

\the\boxdirection\scratchbox: \copy\scratchbox

0: whatever

1: whatever

Another property that can be queried and set is an attribute. In order to get a private

attribute we define one.

\newattribute\MyAt

\setbox\scratchbox\hbox attr \MyAt 123 {whatever}

[\the\boxattribute\scratchbox\MyAt]

\boxattribute\scratchbox\MyAt 456

[\the\boxattribute\scratchbox\MyAt]

[\ifnum\boxattribute\scratchbox\MyAt>400 okay\fi]

[123] [456] [okay]

The sum of the height and depth is available too. Because for practical reasons setting

that property is also needed then, the choice was made to distribute the value equally

over height and depth.

\setbox\scratchbox\hbox {height and depth}

[\the\ht\scratchbox]

[\the\dp\scratchbox]

[\the\boxtotal\scratchbox]

\boxtotal\scratchbox=20pt

[\the\ht\scratchbox]

[\the\dp\scratchbox]

45

LuaMetaTEX primitives

[\the\boxtotal\scratchbox]

[8.35742pt] [2.44385pt] [10.80127pt] [10.0pt] [10.0pt] [20.0pt]

We've now arrived to a set of properties that relate to each other. They are a bit complex

and given the number of possibilities one might need to revert to some trial and error:

orientations and offsets. As with the dimensions, directions and attributes, they are

passed as box specification. We start with the orientation.

\hbox \bgroup \showboxes

\hbox orientation 0 {right}

\quad \hbox orientation 1 {up}

\quad \hbox orientation 2 {left}

\quad \hbox orientation 3 {down}

\egroup

rightH__

u
p

H__ leftH__ d
o
w
n

H__

When the orientation is set, you can also set an offset. Where shifting around a box

can have consequences for the dimensions, an offset is virtual. It gets effective in the

backend, when the contents is converted to some output format.

\hbox \bgroup \showboxes

\hbox orientation 0 yoffset 10pt {right}

\quad \hbox orientation 1 xoffset 10pt {up}

\quad \hbox orientation 2 yoffset -10pt {left}

\quad \hbox orientation 3 xoffset -10pt {down}

\egroup

right
H__

u
p

H__

left

H__ d
o
w
n

H__

The reason that offsets are related to orientation is that we need to know in what di­

rection the offsets have to be applied and this binding forces the user to think about it.

You can also set the offsets using commands.

\setbox\scratchbox\hbox{whatever}%

1 \copy\scratchbox

2 \boxorientation\scratchbox 2 \copy\scratchbox

3 \boxxoffset \scratchbox -15pt \copy\scratchbox

46

LuaMetaTEX primitives

4 \boxyoffset \scratchbox -15pt \copy\scratchbox

5

1 whatever2 whatever 3 whatever 4

whatever

5

\setbox\scratchboxone\hbox{whatever}%

\setbox\scratchboxtwo\hbox{whatever}%

1 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

2 \boxyoffset \scratchboxone -15pt \copy\scratchboxone

3 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

4 \boxyoffset \scratchboxone -15pt \copy\scratchboxone

5 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

6 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

7 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

8 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

1whatever 2

whatever

3

whatever

4

whatever

5whatever6

whatever

7

whatever

8

whatever

The move commands are provides as convenience and contrary to the offsets they do

adapt the dimensions. Internally, with the box, we register the orientation and the off­

sets and when you apply these commands multiple times the current values get over­

written. But . . . because an orientation can be more complex you might not get the

effects you expect when the options we discuss next are used. The reason is that we

store the original dimensions too and these come into play when these other options

are used: anchoring. So, normally you will apply an orientation and offsets once only.

The orientation specifier is actually a three byte number that best can be seen hexa­

decimal (although we stay within the decimal domain). There are three components:

x-anchoring, y-anchoring and orientation:

0x<X><Y><O>

or in TEX speak:

"<X><Y><O>

The landscape and seascape variants both sit on top of the baseline while the flipped

variant has its depth swapped with the height. Although this would be enough a bit

more control is possible.

The vertical options of the horizontal variants anchor on the baseline, lower corner,

upper corner or center.

47

LuaMetaTEX primitives

\ruledhbox orientation "002 {\TEX} and

\ruledhbox orientation "012 {\TEX} and

\ruledhbox orientation "022 {\TEX} and

\ruledhbox orientation "032 {\TEX}

TEX and

TEX

and TEX and TEX

The horizontal options of the horizontal variants anchor in the center, left, right, halfway

left and halfway right.

\ruledhbox orientation "002 {\TEX} and

\ruledhbox orientation "102 {\TEX} and

\ruledhbox orientation "202 {\TEX} and

\ruledhbox orientation "302 {\TEX} and

\ruledhbox orientation "402 {\TEX}

TEX and TEX and TEXand TEX and TEX

The orientation has consequences for the dimensions so they are dealt with in the ex­

pected way in constructing lines, paragraphs and pages, but the anchoring is virtual,

like the offsets. There are two extra variants for orientation zero: on top of baseline or

below, with dimensions taken into account.

\ruledhbox orientation "000 {\TEX} and

\ruledhbox orientation "004 {\TEX} and

\ruledhbox orientation "005 {\TEX}

TEX and TEX and
TEX

The anchoring can look somewhat confusing but you need to keep in mind that it is

normally only used in very controlled circumstances and not in running text. Wrapped

in macros users don't see the details. We're talking boxes here, so for instance:

test\quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

48

LuaMetaTEX primitives

\strut test\hbox orientation "012 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "022 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "032 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "042 \bgroup\strut test\egroup test%

\egroup

\quad test

test te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

test

Where a \vtop has the baseline at the top, a \vbox has it at the bottom. In LuaMeta­

TEX we also have a \dbox, which is a \vbox with that behaves like a \vtop when it's

appended to a vertical list: the height of the first box or rule determines the (base)line

correction that gets applied. The following example demonstrates this:

xxxxxxxxxxxxxxxx
We thrive in information--thick worlds be­

cause of our marvelous and everyday ca­

pacity to select, edit, single out, struc­

ture, highlight, group, pair, merge, har­

monize, synthesize, focus, organize, con­

dense, reduce, boil down, choose, cat­

egorize, catalog, classify, list, abstract,

scan, look into, idealize, isolate, discrim­

inate, distinguish, screen, pigeonhole,

pick over, sort, integrate, blend, inspect,

filter, lump, skip, smooth, chunk, av­

erage, approximate, cluster, aggregate,

outline, summarize, itemize, review, dip

into, flip through, browse, glance into,

leaf through, skim, refine, enumerate,

glean, synopsize, winnow the wheat from

the chaff and separate the sheep from the

goats.

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

We thrive in information--thick worlds be­

cause of our marvelous and everyday ca­

pacity to select, edit, single out, struc­

ture, highlight, group, pair, merge, har­

monize, synthesize, focus, organize, con­

dense, reduce, boil down, choose, cat­

egorize, catalog, classify, list, abstract,

scan, look into, idealize, isolate, discrim­

inate, distinguish, screen, pigeonhole,

pick over, sort, integrate, blend, inspect,

filter, lump, skip, smooth, chunk, av­

erage, approximate, cluster, aggregate,

outline, summarize, itemize, review, dip

into, flip through, browse, glance into,

leaf through, skim, refine, enumerate,

glean, synopsize, winnow the wheat from

the chaff and separate the sheep from the

goats.
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

We thrive in information--thick worlds be­

cause of our marvelous and everyday ca­

pacity to select, edit, single out, struc­

ture, highlight, group, pair, merge, har­

monize, synthesize, focus, organize, con­

dense, reduce, boil down, choose, cat­

egorize, catalog, classify, list, abstract,

scan, look into, idealize, isolate, discrim­

inate, distinguish, screen, pigeonhole,

pick over, sort, integrate, blend, inspect,

filter, lump, skip, smooth, chunk, av­

erage, approximate, cluster, aggregate,

outline, summarize, itemize, review, dip

into, flip through, browse, glance into,

leaf through, skim, refine, enumerate,

glean, synopsize, winnow the wheat from

the chaff and separate the sheep from the

goats.

xxxxxxxxxxxxxxxx

\vbox \vtop \dbox

The d stands for ‘dual’ because we (sort of) have two baselines. The regular height and

depth are those of a \vbox.

49

Splitting

3.7 Splitting

When you feed TEX a paragraph of text it will accumulate the content in a list of nodes.

When the paragraphs is finished by \par or an empty line it will be fed into the par

builder that will try to break the lines as good as possible. Normally that paragraph

will be added to the page and at some point there can be breaks between lines in order

not to overflow the page. When you collect the paragraph in a box you can use \vsplit

to emulate this.

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection

\ruledhbox{\vsplit\scratchbox to 2\lineheight}

\stoplinecorrection

We thrive in information--thick worlds because of our marvelous and everyday capacity

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­

The split off box is given the specified height, but in LuaMetaTEX you can also get the

natural dimensions:

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection

\ruledhbox{\vsplit\scratchbox upto 2\lineheight}

\stoplinecorrection

We thrive in information--thick worlds because of our marvelous and everyday capacity

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­

We can force a resulting box type by using \vsplit, \tsplit and \dsplit (here we use

the visualized variants):

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection

\ruledtsplit \scratchbox upto 2\lineheight

\stoplinecorrection

We thrive in information--thick worlds because of our marvelous and everyday capacity

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­

\setbox\scratchbox\vbox{\samplefile{tufte}}

50

Splitting

\startlinecorrection

\ruledvsplit \scratchbox upto 2\lineheight

\stoplinecorrection

We thrive in information--thick worlds because of our marvelous and everyday capacity

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­

\setbox\scratchbox\vbox{\samplefile{tufte}}

\startlinecorrection

\ruleddsplit \scratchbox upto 2\lineheight

\stoplinecorrection

We thrive in information--thick worlds because of our marvelous and everyday capacity

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­

The engine provides vertical splitters but ConTEXt itself also has a horizontal one.
1

\starttexdefinition Test #1#2#3

\par

\dontleavehmode

\strut

\llap{{\infofont #2}\quad}

\blackrule[width=#2,color=darkblue]

\par

\setbox\scratchbox\hbox{\samplefile{#1}}

\hsplit\scratchbox

to #2

depth \strutdp

height \strutht

shrinkcriterium #3 % badness

\par

\stoptexdefinition

\dostepwiserecurse {100} {120} {2} {

\Test{tufte}{#1mm}{1000}

\Test{tufte}{#1mm}{-100}

}

100mm

We thrive in information--thick worlds because of

1 At some point I might turn that one into a native engine primitive.

51

Splitting

100mm

We thrive in information--thick worlds because of

102mm

We thrive in information--thick worlds because of our

102mm

We thrive in information--thick worlds because of our

104mm

We thrive in information--thick worlds because of our

104mm

We thrive in information--thick worlds because of our

106mm

We thrive in information--thick worlds because of our

106mm

We thrive in information--thick worlds because of our

108mm

We thrive in information--thick worlds because of our

108mm

We thrive in information--thick worlds because of our

110mm

We thrive in information--thick worlds because of our

110mm

We thrive in information--thick worlds because of our

112mm

We thrive in information--thick worlds because of our mar-

112mm

We thrive in information--thick worlds because of our mar-

114mm

We thrive in information--thick worlds because of our mar-

114mm

We thrive in information--thick worlds because of our mar-

116mm

We thrive in information--thick worlds because of our mar-

116mm

We thrive in information--thick worlds because of our mar-

118mm

We thrive in information--thick worlds because of our mar-

118mm

We thrive in information--thick worlds because of our mar-

120mm

We thrive in information--thick worlds because of our mar-

52

Splitting

120mm

We thrive in information--thick worlds because of our mar-

A split off box gets packed at its natural size and a badness as well as overshoot amount

is calculated. When the overshoot is positive and the the badness is larger than the

stretch criterium, the box gets repacked to the natural size. The same happens when

the overshoot is negative and the badness exceeds the shrink criterium. When the

overshoot is zero (basically we have a fit) but the badness still exceeds the stretch or

shrink we also repack. Indeed this is a bit fuzzy, but so is badness.

\starttexdefinition Test #1#2#3

\par

\dontleavehmode

\strut

\llap{{\infofont #2}\quad}

\blackrule[width=#2,color=darkblue]

\par

\setbox\scratchbox\hbox{\samplefile{#1}}

\doloop {

\ifvoid\scratchbox

\exitloop

\else

\hsplit\scratchbox

to #2

depth \strutdp

height \strutht

#3

\par

\allowbreak

\fi

}

\stoptexdefinition

\Test{tufte}{100mm}{shrinkcriterium 1000}

\Test{tufte}{100mm}{shrinkcriterium 0}

\Test{tufte}{100mm}{}

100mm

We thrive in information--thick worlds because of

our marvelous and everyday capacity to select, edit,

single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense,

53

Splitting

reduce, boil down, choose, categorize, catalog,

classify, list, abstract, scan, look into, idealize, iso-

late, discriminate, distinguish, screen, pigeonhole,

pick over, sort, integrate, blend, inspect, filter,

lump, skip, smooth, chunk, average, approximate,

cluster, aggregate, outline, summarize, itemize, re-

view, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synop-

size, winnow the wheat from the chaff and separate

the sheep from the goats.

100mm

We thrive in information--thick worlds because of

our marvelous and everyday capacity to select, edit,

single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense,

reduce, boil down, choose, categorize, catalog,

classify, list, abstract, scan, look into, idealize, iso-

late, discriminate, distinguish, screen, pigeonhole,

pick over, sort, integrate, blend, inspect, filter,

lump, skip, smooth, chunk, average, approximate,

cluster, aggregate, outline, summarize, itemize, re-

view, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synop-

size, winnow the wheat from the chaff and separate

the sheep from the goats.

100mm

We thrive in information--thick worlds because of

our marvelous and everyday capacity to select, edit,

single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense,

reduce, boil down, choose, categorize, catalog,

classify, list, abstract, scan, look into, idealize, iso-

late, discriminate, distinguish, screen, pigeonhole,

pick over, sort, integrate, blend, inspect, filter,

lump, skip, smooth, chunk, average, approximate,

cluster, aggregate, outline, summarize, itemize, re-

view, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synop-

size, winnow the wheat from the chaff and separate

54

Colofon

BBB
the sheep from the goats.

Watch how the last line get stretched when we set the criterium to zero. I'm sure that

users will find reasons to abuse this effect.

3.7 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

111111

XXX

222222

AAA

55

4 Expansion

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

expansion

56

Preamble

Contents

4.1 Preamble 56

4.2 TEX primitives 56

4.3 𝜀-TEX primitives 61

4.4 LuaTEX primitives 63

4.5 LuaMetaTEX primitives 64

4.6 Dirty tricks 74

4.1 Preamble

This short manual demonstrates a couple of properties of the macro language. It is

not an in-depth philosophical expose about macro languages, tokens, expansion and

such that some TEXies like. I prefer to stick to the practical aspects. Occasionally it

will be technical but you can just skip those paragraphs (or later return to them) when

you can't follow the explanation. It's often not that relevant. I won't talk in terms of

mouth, stomach and gut the way the TEXbook does and although there is no way to

avoid the word ‘token’ I will do my best to not complicate matters by too much token

speak. Examples show best what we mean.

4.2 TEX primitives

The TEX language provides quite some commands and those built in are called prim­

itives. User defined commands are called macros. A macro is a shortcut to a list of

primitives and/or macro calls. All can be mixed with characters that are to be typeset

somehow.

\def\MyMacro{b}

a\MyMacro c

When TEX reads this input the a gets turned into a glyph node with a reference to the

current font set and the character a. Then the parser sees a macro call, and it will enter

another input level where it expands this macro. In this case it sees just an b and it will

give this the same treatment as the a. The macro ends, the input level decrements and

the c gets its treatment.

Before we move on to more examples and differences between engines, it is good to

stress that \MyMacro is not a primitive command: we made our command here. The b

actually can be seen as a sort of primitive because in this macro it gets stored as so

57

TEX primitives

called token with a primitive property. That primitive property can later on be used to

determine what to do. More explicit examples of primitives are \hbox, \advance and

\relax. It will be clear that ConTEXt extends the repertoire of primitive commands

with a lot of macro commands. When we typeset a source using module m-scite the

primitives come out dark blue.

The amount of primitives differs per engine. It all starts with TEX as written by Don

Knuth. Later 𝜀-TEX added some more primitives and these became official extensions

adopted by other variants of TEX. The pdfTEX engine added quite some and as follow up

on that LuaTEX added more but didn't add all of pdfTEX. A few new primitives came from

Omega (Aleph). The LuaMetaTEX engine drops a set of primitives that comes with Lua­

TEX and adds plenty new ones. The nature of this engine (no backend and less frontend)

makes that we need to implement some primitives as macros. But the basic set is what

good old TEX comes with.

Internally these so called primitives are grouped in categories that relate to their na­

ture. They can be directly expanded (a way of saying that they get immediately inter­

preted) or delayed (maybe stored for later usage). They can involve definitions, calcula­

tions, setting properties and values or they can result in some typesetting. This is what

makes TEX confusing to new users: it is a macro programming language, an interpreter

but at the same time an executor of typesetting instructions.

A group of primitives is internally identified as a command (they have a cmd code) and

the sub commands are flagged by their chr code. This sounds confusing but just thing

of the fact that most of what we input are characters and therefore they make up most

sub commands. For instance the ‘letter cmd’ is used for characters that are seen as

letters that can be used in the name of user commands, can be typeset, are valid for

hyphenation etc. The letter related cmd can have many chr codes (all of Unicode). I'd

like to remark that the grouping is to a large extend functional, so sometimes primitives

that you expect to be similar in nature are in different groups. This has to do with the

fact that TEX needs to be a able to determine efficiently if a primitive is operating (or

forbidden) in horizontal, vertical and/or math mode.

There are more than 150 internal cmd groups. if we forget about the mentioned char­

acter related ones, some, have only a few sub commands (chr) and others many more

(just consider all the OpenType math spacing related parameters). A handful of these

commands deal with what we call macros: user defined combinations of primitives and

other macros, consider them little programs. The \MyMacro example above is an ex­

ample. There are differences between engines. In standard TEX there are \outer and

\long commands, and most engines have these. However, in LuaMetaTEX the later to

be discussed \protectedmacros have their own specific ‘call cmd’. Users don't need to

bother about this.

58

TEX primitives

So, when from now on we talk about primitives, we mean the built in, hard coded com­

mands, and when we talk about macros we mean user commands. Although internally

there are less cmd categories than primitives, from the perspective of the user they are

all unique. Users won't consult the source anyway but when they do they are warned.

Also, when in LuaMetaTEX you use the low level interfacing to TEX you have to figure

out these subtle aspects because there this grouping does matter.

Before we continue I want to make clear that expansion (as discussed in this document)

can refer to a macro being expanded (read: its meaning gets injected into the input, so

the engine kind of sidetracks from what is was doing) but also to direct consequences

of running into a primitive. However, users only need to consider expansion in the

perspective of macros. If a user has \advance in the input it immediately gets done.

But when it's part of a macro definition it only is executed when the macro expands. A

good check in (traditional) TEX is to compare what happens in \def and \edef which

is why we will use these two in the upcoming examples. You put something in a macro

and then check what \meaning or \show reports.

Now back to user defined macros. A macro can contain references to macros so in

practice the input can go several levels up and some applications push back a lot so

this is why your TEX input stack can be configured to be huge.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

When \MyMacroB is defined, its body gets three so called tokens: the character token 1

with property ‘other’, a token that is a reference to the macro \MyMacroB, and a char­

acter token 2, also with property ‘other’ The meaning of \MyMacroA is five tokens: a

reference to a space token, then three character tokens with property ‘letter’, and fi­

nally a space token.

\def \MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

In the second definition an \edef is used, where the e indicates expansion. This time

the meaning gets expanded immediately. So we get effectively the same as in:

\def\MyMacroB{1 and 2}

Characters are easy: they just expand to themselves or trigger adding a glyph node,

but not all primitives expand to their meaning or effect.

59

TEX primitives

\def\MyMacroA{\scratchcounter = 1 }

\def\MyMacroB{\advance\scratchcounter by 1}

\def\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:\the \scratchcounter

Let's assume that \scratchcounter is zero to start with and use \edef's:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 0

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:0

So, this time the third macro has its meaning frozen, but we can prevent this by applying

a \noexpand when we do this:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\noexpand\the\scratchcounter}

\MyMacroA a

\MyMacroB b

60

TEX primitives

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:\the \scratchcounter

Of course this is a rather useless example but it serves its purpose: you'd better be

aware what gets expanded immediately in an \edef. In most cases you only need to

worry about \the and embedded macros (and then of course their meanings).

You can also store tokens in a so-called token register. Here we use a predefined scratch

register:

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks {\MyMacroA}

The content of \scratchtoks is: “\MyMacroA”, so no expansion has happened here.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroA}

Now the content of \scratchtoks is: “ and ”, so this time expansion has happened.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

Indeed the macro gets expanded but only one level: “1\MyMacroA 2”. Compare this

with:

\def\MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

The trick is to expand in two steps with an intermediate \edef: “1 and 2”. Later we will

see that other engines provide some more expansion tricks. The only way to get some

grip on expansion is to just play with it.

61

𝜀-TEX primitives

The \expandafter primitive expands the token (which can be a macro) standing after

the next next one and then injects its meaning into the stream. So:

\expandafter \MyMacroA \MyMacroB

works okay. In a normal document you will never need this kind of hackery: it only

happens in a bit more complex macros. Here is an example:

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\egroup

\the\scratchcounter

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\expandafter

\egroup

\the\scratchcounter

The first one gives 1, while the second gives 2.

4.3 𝜀-TEX primitives

In this engine a couple of extensions were added and later on pdfTEX added some more.

We only discuss a few that relate to expansion. There is however a pitfall here. Before

𝜀-TEX showed up, ConTEXt already had a few mechanism that also related to expansion

and it used some names for macros that clash with those in 𝜀-TEX. This is why we will
use the \normal prefix here to indicate the primitive.2.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\edef\MyMacroABC{\MyMacroA\MyMacroB\MyMacroC}

These macros have the following meanings:

macro:a

macro:b

2 In the meantime we no longer have a low level \protected macro so one can use the primitive

62

𝜀-TEX primitives

protected macro:c

macro:ab\MyMacroC

In ConTEXt you will use the \unexpanded prefix instead, because that one did something

similar in older versions of ConTEXt. As we were early adopters of 𝜀-TEX, this later
became a synonym to the 𝜀-TEX primitive.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded{\scratchtoks{\MyMacroA\MyMacroB\MyMacroC}}

Here the wrapper around the token register assignment will expand the three macros,

unless they are protected, so its content becomes “ab\MyMacroC”. This saves either a

lot of more complex \expandafter usage or the need to use an intermediate \edef. In

ConTEXt the \expanded macro does something simpler but it doesn't expand the first

token as this is meant as a wrapper around a command, like:

\expanded{\chapter{....}} % a ConTeXt command

where we do want to expand the title but not the \chapter command (not that this

would happen actually because \chapter is a protected command.)

The counterpart of \normalexpanded is \normalunexpanded, as in:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded {\scratchtoks

{\MyMacroA\normalunexpanded {\MyMacroB}\MyMacroC}}

The register now holds “a\MyMacroB\MyMacroC”: three tokens, one character token and

two macro references.

Tokens can represent characters, primitives, macros or be special entities like starting

math mode, beginning a group, assigning a dimension to a register, etc. Although you

can never really get back to the original input, you can come pretty close, with:

\detokenize{this can $ be anything \bgroup}

This (when typeset monospaced) is: this can $ be anything \bgroup. The detok­

enizer is like \string applied to each token in its argument. Compare this to:

\normalexpanded {

63

LuaTEX primitives

\normaldetokenize{10pt}

}

We get four tokens: 10pt.

\normalexpanded {

\string 1\string 0\string p\string t

}

So that was the same operation: 10pt, but in both cases there is a subtle thing going on:

characters have a catcode which distinguishes them. The parser needs to know what

makes up a command name and normally that's only letters. The next snippet shows

these catcodes:

\normalexpanded {

\noexpand\the\catcode`\string 1 \noexpand\enspace

\noexpand\the\catcode`\string 0 \noexpand\enspace

\noexpand\the\catcode`\string p \noexpand\enspace

\noexpand\the\catcode`\string t \noexpand

}

The result is “12 12 11 11”: two characters are marked as ‘letter’ and two fall in the

‘other’ category.

4.4 LuaTEX primitives

This engine adds a little to the expansion repertoire. First of all it offers a way to extend

token lists registers:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{b}

\scratchtoks{\MyMacroA\MyMacroB}

The result is: “\MyMacroA\MyMacroB”.

\toksapp\scratchtoks{\MyMacroA\MyMacroB}

We're now at: “\MyMacroA\MyMacroB\MyMacroA\MyMacroB\MyMacroA\MyMacroB”.

\etoksapp\scratchtoks{\MyMacroA\space\MyMacroB\space\MyMacroC}

64

LuaMetaTEX primitives

The register has this content: “\MyMacroA\MyMacroB\MyMacroA\MyMacroB a b \MyMacroC

a b \MyMacroC”, so the additional context got expanded in the process, except of course

the protected macro \MyMacroC.

There is a bunch of these combiners: \toksapp and \tokspre for local appending and

prepending, with global companions: \gtoksapp and \gtokspre, as well as expanding

variant: \etoksapp, \etokspre, \xtoksapp and \xtokspre.

These are not beforehand more efficient that using intermediate expanded macros or

token lists, simply because in the process TEX has to create tokens lists too, but some­

times they're just more convenient to use. In ConTEXt we actually do benefit from these.

4.5 LuaMetaTEX primitives

We already saw that macro's can be defined protected which means that

\def\TestA{A}

\protected \def\TestB{B}

\edef\TestC{\TestA\TestB}

gives this:

\TestC : A\TestB

One way to get \TestB expanded it to prefix it with \expand:

\def\TestA{A}

\protected \def\TestB{B}

\edef\TestC{\TestA\TestB}

\edef\TestD{\TestA\expand\TestB}

We now get:

\TestC : A\TestB

\TestD : AB

There are however cases where one wishes this to happen automatically, but that will

also make protected macros expand which will create havoc, like switching fonts.

\def\TestA{A}

\protected \def\TestB{B}

\semiprotected \def\TestC{C}

\edef\TestD{\TestA\TestB\TestC}

65

LuaMetaTEX primitives

\edef\TestE{\normalexpanded{\TestA\TestB\TestC}}

\edef\TestF{\semiexpanded {\TestA\TestB\TestC}}

This time \TestC looses its protection:

\TestA : A

\TestB : B

\TestC : C

\TestD : A\TestB \TestC

\TestE : A\TestB \TestC

\TestF : A\TestB C

Actually adding \fullyexpanded would be trivial but it makes not much sense to add

the overhead (at least not now). This feature is experimental anyway so it might go

away when I see no real advantage from it.

When you store something in a macro or token register you always need to keep an

eye on category codes. A dollar in the input is normally treated as math shift, a hash

indicates a macro parameter or preamble entry. Characters like ‘A’ are letters but ‘[’

and ‘]’ are tagged as ‘other’. The TEX scanner acts according to these codes. If you ever

find yourself in a situation that changing catcodes is no option or cumbersome, you can

do this:

\edef\TestOA{\expandtoken\othercatcode `A}

\edef\TestLA{\expandtoken\lettercatcode`A}

In both cases the meaning is A but in the first case it's not a letter but a character

flagged as ‘other’.

A whole new category of commands has to do with so called local control. When TEX

scans and interprets the input, a process takes place that is called tokenizing: (se­

quences of) characters get a symbolic representation and travel through the system as

tokens. Often they immediately get interpreted and are then discarded. But when for

instance you define a macro they end up as a linked list of tokens in the macro body. We

already saw that expansion plays a role. In most cases, unless TEX is collecting tokens,

the main action is dealt with in the so-called main loop. Something gets picked up from

the input but can also be pushed back, for instance because of some lookahead that

didn't result in an action. Quite some time is spent in pushing and popping from the

so-called input stack.

When we are in Lua, we can pipe back into the engine but all is collected till we're

back in TEX where the collected result is pushed into the input. Because TEX is a mix

of programming and action there basically is only that main loop. There is no real way

66

LuaMetaTEX primitives

to start a sub run in Lua and do all kind of things independent of the current one. This

makes sense when you consider the mix: it would get too confusing.

However, in LuaTEX and even better in LuaMetaTEX, we can enter a sort of local state

and this is called ‘local control’. When we are in local control a newmain loop is entered

and the current state is temporarily forgotten: we can for instance expand where one

level up expansion was not done. It sounds complicated an indeed it is complicated so

examples have to clarify it.

1 \setbox0\hbox to 10pt{2} \count0=3 \the\count0 \multiply\count0 by 4

This snippet of code is not that useful but illustrates what we're dealing with:

• The 1 gets typeset. So, characters like that are seen as text.

• The \setbox primitive triggers picking up a register number, then goes on scanning

for a box specification and that itself will typeset a sequence of whatever until the

group ends.

• The count primitive triggers scanning for a register number (or reference) and then

scans for a number; the equal sign is optional.

• The the primitive injects some value into the current input stream and it does so by

entering a new input level.

• The multiply primitive picks up a register specification and multiplies that by the

next scanned number. The by is optional.

We now look at this snippet again but with an expansion context:

\def \TestA{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

These two macros have a slightly different body. Make sure you see the difference

before reading on.

control sequence: TestA

542601 12 49 other char 1 U+00031

226982 10 32 spacer

540394 122 0 set box setbox

543515 12 48 other char 0 U+00030

543731 30 14 make box hbox

543549 1 123 left brace

67

LuaMetaTEX primitives

32720 12 50 other char 2 U+00032

543827 2 125 right brace

543498 10 32 spacer

539317 115 1 register count

542847 12 48 other char 0 U+00030

542835 12 61 other char = U+0003D

543043 12 51 other char 3 U+00033

560622 10 32 spacer

543247 135 0 the the

538520 115 1 register count

543526 12 48 other char 0 U+00030

control sequence: TestB

542622 12 49 other char 1 U+00031

543073 10 32 spacer

543488 122 0 set box setbox

543478 12 48 other char 0 U+00030

538395 30 14 make box hbox

543743 1 123 left brace

543391 12 50 other char 2 U+00032

543797 2 125 right brace

543803 10 32 spacer

543817 115 1 register count

543471 12 48 other char 0 U+00030

540503 12 61 other char = U+0003D

261633 12 51 other char 3 U+00033

543165 10 32 spacer

542704 12 49 other char 1 U+00031

We now introduce a new primitive \localcontrolled:

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestC{1 \setbox0\hbox{2} \localcontrolled{\count0=3} \the\count0}

Again, watch the subtle differences:

control sequence: TestB

543823 12 49 other char 1 U+00031

542809 10 32 spacer

68

LuaMetaTEX primitives

543234 122 0 set box setbox

543056 12 48 other char 0 U+00030

543051 30 14 make box hbox

28960 1 123 left brace

540454 12 50 other char 2 U+00032

543117 2 125 right brace

543253 10 32 spacer

543057 115 1 register count

413052 12 48 other char 0 U+00030

261632 12 61 other char = U+0003D

540295 12 51 other char 3 U+00033

543903 10 32 spacer

548177 12 49 other char 1 U+00031

control sequence: TestC

540206 12 49 other char 1 U+00031

539343 10 32 spacer

539112 122 0 set box setbox

540544 12 48 other char 0 U+00030

540262 30 14 make box hbox

226994 1 123 left brace

119162 12 50 other char 2 U+00032

543932 2 125 right brace

543581 10 32 spacer

542587 10 32 spacer

543924 12 51 other char 3 U+00033

Another example:

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestD{\localcontrolled{1 \setbox0\hbox{2} \count0=3 \the\count0}}

1 3 ← Watch how the results end up here!

control sequence: TestB

32744 12 49 other char 1 U+00031

413154 10 32 spacer

543012 122 0 set box setbox

543807 12 48 other char 0 U+00030

69

LuaMetaTEX primitives

540485 30 14 make box hbox

542616 1 123 left brace

543825 12 50 other char 2 U+00032

543302 2 125 right brace

539126 10 32 spacer

413208 115 1 register count

542738 12 48 other char 0 U+00030

538607 12 61 other char = U+0003D

543018 12 51 other char 3 U+00033

543891 10 32 spacer

211385 12 51 other char 3 U+00033

control sequence: TestD

<no tokens>

We can use this mechanism to define so called fully expandable macros:

\def\WidthOf#1%

{\beginlocalcontrol

\setbox0\hbox{#1}%

\endlocalcontrol

\wd0 }

\scratchdimen\WidthOf{The Rite Of Spring}

\the\scratchdimen

104.72021pt

When you want to add some grouping, it quickly can become less pretty:

\def\WidthOf#1%

{\dimexpr

\beginlocalcontrol

\begingroup

\setbox0\hbox{#1}%

\expandafter

\endgroup

\expandafter

\endlocalcontrol

\the\wd0

70

LuaMetaTEX primitives

\relax}

\scratchdimen\WidthOf{The Rite Of Spring}

\the\scratchdimen

104.72021pt

A single token alternative is available too and its usage is like this:

\def\TestA{\scratchcounter=100 }

\edef\TestB{\localcontrol\TestA \the\scratchcounter}

\edef\TestC{\localcontrolled{\TestA} \the\scratchcounter}

The content of \TestB is ‘100’ and of course the \TestC macro gives ‘ 100’.

We now move to the Lua end. Right from the start the way to get something into TEX

from Lua has been the print functions. But we can also go local (immediate). There are

several methods:

• via a set token register

• via a defined macro

• via a string

Among the things to keep in mind are catcodes, scope and expansion (especially in when

the result itself ends up in macros). We start with an example where we go via a token

register:

\toks0={\setbox0\hbox{The Rite Of Spring}}

\toks2={\setbox0\hbox{The Rite Of Spring!}}

\startluacode

tex.runlocal(0) context("[1: %p]",tex.box[0].width)

tex.runlocal(2) context("[2: %p]",tex.box[0].width)

\stopluacode

[1: 104.72021pt][2: 109.14062pt]

We can also use a macro:

\def\TestA{\setbox0\hbox{The Rite Of Spring}}

\def\TestB{\setbox0\hbox{The Rite Of Spring!}}

\startluacode

71

LuaMetaTEX primitives

tex.runlocal("TestA") context("[3: %p]",tex.box[0].width)

tex.runlocal("TestB") context("[4: %p]",tex.box[0].width)

\stopluacode

[3: 104.72021pt][4: 109.14062pt]

A third variant is more direct and uses a (Lua) string:

\startluacode

tex.runstring([[\setbox0\hbox{The Rite Of Spring}]])

context("[5: %p]",tex.box[0].width)

tex.runstring([[\setbox0\hbox{The Rite Of Spring!}]])

context("[6: %p]",tex.box[0].width)

\stopluacode

[5: 104.72021pt][6: 109.14062pt]

A bit more high level:

context.runstring([[\setbox0\hbox{(Here \bf 1.2345)}]])

context.runstring([[\setbox0\hbox{(Here \bf %.3f)}]],1.2345)

Before we had runstring this was the way to do it when staying in Lua was needed:

\startluacode

token.setmacro("TestX",[[\setbox0\hbox{The Rite Of Spring}]])

tex.runlocal("TestX")

context("[7: %p]",tex.box[0].width)

\stopluacode

[7: 104.72021pt]

\startluacode

tex.scantoks(0,tex.ctxcatcodes,[[\setbox0\hbox{The Rite Of Spring!}]])

tex.runlocal(0)

context("[8: %p]",tex.box[0].width)

\stopluacode

[8: 109.14062pt]

The order of flushing matters because as soon as something is not stored in a token list

or macro body, TEX will typeset it. And as said, a lot of this relates to pushing stuff into

the input which is stacked. Compare:

72

LuaMetaTEX primitives

\startluacode

context("[HERE 1]")

context("[HERE 2]")

\stopluacode

[HERE 1][HERE 2]

with this:

\startluacode

tex.pushlocal() context("[HERE 1]") tex.poplocal()

tex.pushlocal() context("[HERE 2]") tex.poplocal()

\stopluacode

[HERE 1][HERE 2]

You can expand a macro at the Lua end with token.expandmacro which has a peculiar

interface. The first argument has to be a string (the name of a macro) or a userdata (a

valid macro token). This macro can be fed with parameters by passing more arguments:

string serialized to tokens

true wrap the next string in curly braces

table each entry will become an argument wrapped in braces

token inject the token directly

number change control to the given catcode table

There are more scanner related primitives, like the 𝜀-TEX primitive \detokenize:

[\detokenize {test \relax}]

This gives: [test \relax] . In LuaMetaTEX we also have complementary primi­

tive(s):

[\tokenized catcodetable \vrbcatcodes {test {\bf test} test}]

[\tokenized {test {\bf test} test}]

[\retokenized \vrbcatcodes {test {\bf test} test}]

The \tokenized takes an optional keyword and the examples above give: [test {\bf test} test]

[test test test] [test {\bf test} test] . The LuaTEX primitive \scantextokens

which is a variant of 𝜀-TEX's \scantokens operates under the current catcode regime

(the last one honors \everyeof). The difference with \tokenized is that this one first

serializes the given token list (just like \detokenize).3

3 The \scan *tokens primitives now share the same helpers as Lua, but they should behave the same as in

LuaTEX.

73

LuaMetaTEX primitives

With \retokenized the catcode table index is mandatory (it saves a bit of scanning and

is easier on intermixed \expandafter usage. There often are several ways to accom­

plish the same:

\def\MyTitle{test {\bf test} test}

\detokenize \expandafter{\MyTitle}: 0.46\crlf

\meaningless \MyTitle : 0.47\crlf

\retokenized \notcatcodes{\MyTitle}: 0.87\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}: 0.93\crlf

test {\bf test} test: 0.46

test {\bf test} test: 0.47

test {\bf test} test: 0.87

test {\bf test} test: 0.93

Here the numbers show the relative performance of these methods. The \detokenize

and \meaninglesswin because they already know that a verbose serialization is needed.

The last two first serialize and then reinterpret the resulting token list using the given

catcode regime. The last one is slowest because it has to scan the keyword.

There is however a pitfall here:

\def\MyText {test}

\def\MyTitle{test \MyText\space test}

\detokenize \expandafter{\MyTitle}\crlf

\meaningless \MyTitle \crlf

\retokenized \notcatcodes{\MyTitle}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf

The outcome is different now because we have an expandable embedded macro call.

The fact that we expand in the last two primitives is also the reason why they are

‘slower’.

test \MyText \space test

test \MyText \space test

test test test

test test test

To complete this picture, we show a variant than combines much of what has been

introduced in this section:

74

Dirty tricks

\semiprotected\def\MyTextA {test}

\def\MyTextB {test}

\def\MyTitle{test \MyTextA\space \MyTextB\space test}

\detokenize \expandafter{\MyTitle}\crlf

\meaningless \MyTitle \crlf

\retokenized \notcatcodes{\MyTitle}\crlf

\retokenized \notcatcodes{\semiexpanded{\MyTitle}}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf

\tokenized catcodetable \notcatcodes{\semiexpanded{\MyTitle}}

This time compare the last four lines:

test \MyTextA \space \MyTextB \space test

test \MyTextA \space \MyTextB \space test

test \MyTextA test test

test test test test

test \MyTextA test test

test test test test

Of course the question remains to what extend we need this and eventually will apply

in ConTEXt. The \detokenize is used already. History shows that eventually there is a

use for everything and given the way LuaMetaTEX is structured it was not that hard to

provide the alternatives without sacrificing performance or bloating the source.

4.6 Dirty tricks

When I was updating this manual Hans vd Meer and I had some discussions about

expansion and tokenization related issues when combining of xml processing with TEX

macros where he did some manipulations in Lua. In these mixed cases you can run

into catcode related problems because in xml you want for instance a # to be a hash

mark (other character) and not an parameter identifier. Normally this is handled well

in ConTEXt but of course there are complex cases where you need to adapt.

Say that youwant to compare two strings (officially we should say token lists) withmixed

catcodes. Let's also assume that you want to use the normal \if construct (which was

part of the discussion). We start with defining a test set. The reason that we present

this example here is that we use commands discussed in previous sections:

\def\abc{abc}

\semiprotected \def\xyz{xyz}

\edef\pqr{\expandtoken\notcatcodes`p%

75

Dirty tricks

\expandtoken\notcatcodes`q%

\expandtoken\notcatcodes`r}

1: \ifcondition\similartokens{abc} {def}YES\else NOP\fi (NOP) \quad

2: \ifcondition\similartokens{abc}{\abc}YES\else NOP\fi (YES)

3: \ifcondition\similartokens{xyz} {pqr}YES\else NOP\fi (NOP) \quad

4: \ifcondition\similartokens{xyz}{\xyz}YES\else NOP\fi (YES)

5: \ifcondition\similartokens{pqr} {pqr}YES\else NOP\fi (YES) \quad

6: \ifcondition\similartokens{pqr}{\pqr}YES\else NOP\fi (YES)

So, we have a mix of expandable and semi expandable macros, and also a mix of cat­

codes. A naive approach would be:

\permanent\protected\def\similartokens#1#2%

{\iftok{#1}{#2}}

but that will fail on some cases:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: NOP(YES)

So how about:

\permanent\protected\def\similartokens#1#2%

{\iftok{\detokenize{#1}}{\detokenize{#2}}}

That one is even worse:

1: NOP(NOP) 2: NOP(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: NOP(YES)

We need to expand so we end up with this:

\permanent\protected\def\similartokens#1#2%

{\normalexpanded{\noexpand\iftok

{\noexpand\detokenize{#1}}

{\noexpand\detokenize{#2}}}}

Better:

1: NOP(NOP) 2: YES(YES)

76

Colofon

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: YES(YES)

But that will still not deal with the mildly protected macro so in the end we have:

\permanent\protected\def\similartokens#1#2%

{\semiexpanded{\noexpand\iftok

{\noexpand\detokenize{#1}}

{\noexpand\detokenize{#2}}}}

Now we're good:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: YES(YES)

5: YES(YES) 6: YES(YES)

Finally we wrap this one in the usual \doifelse... macro:

\permanent\protected\def\doifelsesimilartokens#1#2%

{\ifcondition\similartokens{#1}{#2}%

\expandafter\firstoftwoarguments

\else

\expandafter\secondoftwoarguments

\fi}

so that we can do:

\doifelsesimilartokens{pqr}{\pqr}{YES}{NOP}

A companion macro of this is \wipetoken but for that one you need to look into the

source.

4.6 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

77

5 Registers

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

registers

78

Preamble

Contents

5.1 Preamble 78

5.2 TEX primitives 78

5.3 𝜀-TEX primitives 81

5.4 LuaTEX primitives 81

5.5 LuaMetaTEX primitives 82

5.1 Preamble

Registers are sets of variables that are accessed by index and a such resemble regis­

ters in a processing unit. You can store a quantity in a register, retrieve it, and also

manipulate it.

There is hardly any need to use them in ConTEXt so we keep it simple.

5.2 TEX primitives

There are several categories:

• Integers (int): in order to be portable (at the time it surfaced) there are only integers

and no floats. The only place where TEX uses floats internally is when glue gets

effective which happens in the backend.

• Dimensions (dimen): internally these are just integers but when they are entered

they are sliced into two parts so that we have a fractional part. The internal repre­

sentation is called a scaled point.

• Glue (skip): these are dimensions with a few additional properties: stretch and

shrink. Being a compound entity they are stored differently and thereby a bit less

efficient than numbers and dimensions.

• Math glue (muskip): this is the same as glue but with a unit that adapts to the current

math style properties. It's best to think about them as being relative measures.

• Token lists (toks): these contain a list of tokens coming from the input or coming

from a place where they already have been converted.

The original TEX engine had 256 entries per set. The first ten of each set are normally

reserved for scratch purposes: the even ones for local use, and the odd ones for global

usage. On top of that macro packages can reserve some for its own use. It was quite

79

TEX primitives

easy to reach the maximum but there were tricks around that. This limitation is no

longer present in the variants in use today.

Let's set a few dimension registers:

\dimen 0 = 10 pt

\dimen2=10pt

\dimen4 10pt

\scratchdimen 10pt

We can serialize them with:

\the \dimen0

\number \dimen2

\meaning\dimen4

\meaning\scratchdimen

The results of these operations are:

10.0pt

655360

\dimen4

dimension 10.0pt

The last two is not really useful but it is what you see when tracing options are set. Here

\scratchdimen is a shortcut for a register. This is not a macro but a defined register.

The low level \dimendef is used for this but in a macro package you should not use that

one but the higher level \newdimen macro that uses it.

\newdimen\MyDimenA

\def \MyDimenB{\dimen999}

\dimendef\MyDimenC998

\meaning\MyDimenA

\meaning\MyDimenB

\meaning\MyDimenC

Watch the difference:

\dimen264

macro:\dimen 999

\dimen998

80

TEX primitives

The first definition uses a yet free register so you won't get a clash. The second one is

just a shortcut using a macro and the third one too but again direct shortcut. Try to

imagine how the second line gets interpreted:

\MyDimenA10pt \MyDimenA10.5pt

\MyDimenB10pt \MyDimenB10.5pt

\MyDimenC10pt \MyDimenC10.5pt

Also try to imagine what messing around with \MyDimenC will do when we also have

defined a few hundred extra dimensions with \newdimen.

In the case of dimensions the \number primitive will make the register serialize as scaled

points without unit sp.

Next we see some of the other registers being assigned:

\count 0 = 100

\skip 0 = 10pt plus 3pt minus 2pt

\skip 0 = 10pt plus 1fill

\muskip 0 = 10mu plus 3mu minus 2mu

\muskip 0 = 10mu minus 1 fil

\toks 0 = {hundred}

When a number is expected, you can use for instance this:

\scratchcounter\scratchcounterone

Here we use a few predefined scratch registers. You can also do this:

\scratchcounter\numexpr\scratchcounterone+\scratchcountertwo\relax

There are some quantities that also qualify as number:

\chardef\MyChar=123 % refers to character 123 (if present)

\scratchcounter\MyChar

In the past using \chardef was a way to get around the limited number of registers,

but it still had (in traditional TEX) a limitation: you could not go beyond 255. The

\mathchardef could fo higher as it also encodes a family number and class. This limi­

tation has been lifted in LuaTEX.

A character itself can also be interpreted as number, in which case it has to be prefixed

with a reverse quote: `, so:

\scratchcounter\numexpr`0+5\relax

81

𝜀-TEX primitives

\char\scratchcounter

produces “5” because the `0 expands into the (ascii and utf8) slot 48 which represents

the character zero. In this case the next makes more sense:

\char\numexpr`0+5\relax

If you want to know more about all these quantities, “TEX By Topic” provides a good

summary of what TEX has to offer, and there is no need to repeat it here.

5.3 𝜀-TEX primitives

Apart from the ability to use expressions, the contribution to registers that 𝜀-TEX brought
was that suddenly we could use upto 65K of them, which is more than enough. The ex­

tra registers were not as efficient as the first 256 because they were stored in the hash

table, but that was not really a problem. In Omega and later LuaTEX regular arrays

were used, at the cost of more memory which in the meantime has become cheap. As

ConTEXt moved to 𝜀-TEX rather early its users never had to worry about it.

5.4 LuaTEX primitives

The LuaTEX engine introduced attributes. These are numeric properties that are bound

to the nodes that are the result of typesetting operations. They are basically like integer

registers but when set their values get bound and when unset they are kind of invisible.

• Attribute (attribute): a numeric property that when set becomes part of the current

attribute list that gets assigned to nodes.

Attributes can be used to communicate properties to Lua callbacks. There are several

functions available for setting them and querying them.

\attribute999 = 123

Using attributes this way is dangerous (of course I can only speak for ConTEXt) because

an attribute value might trigger some action in a callback that gives unwanted side

effects. For convenience ConTEXt provides:

\newattribute\MyAttribute

Which currently defines \MyAttribute as integer 1026 and is meant to be used as:4

4 The low level \attributedef command is rather useless in the perspective of ConTEXt.

82

LuaMetaTEX primitives

\attribute\MyAttribute = 123

Just be aware that defining attributes can have an impact on performance. As you

cannot access them at the TEX end you seldom need them. If you do you can better use

the proper more high level definers (not discussed here).

5.5 LuaMetaTEX primitives

The fact that scanning stops at a non-number or \relax can be sort of unpredictable

which is why in LuaMetaTEX we also support the following variant:

\scratchdimen\dimexpr 10pt + 3pt \relax

\scratchdimen\dimexpr {10pt + 3pt}

At the cost of one more token braces can be used as boundaries instead of the single

\relax boundary.

An important property of registers is that they can be accessed by a number. This has

big consequences for the implementation: they are part of the big memory store and

consume dedicated ranges. If we had only named access TEX's memory layout could be

a bit leaner. In principle we could make the number of registers smaller because any

limit on the amount at some point can be an obstacle. It is for that reason that we also

have name-only variants:

\dimensiondef \MyDimenA 12pt

\integerdef \MyIntegerA 12

\gluespecdef \MyGlueA 12pt + 3pt minus 4pt

\mugluespecdef\MyMuA 12mu + 3mu minus 4mu

These are as efficient but not accessible by number but they behave like registers which

means that you (can) use \the, \advance, \multiply and \divide with them.5 In case

you wonder why there is no alternative for \toksdef, there actually are multiple: they

are called macros.

todo: expressions

5 There are also the slightly more efficient \advanceby, \multiplyby and \divideby that don't check for the

by keyword.

83

Colofon

5.5 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

84

6 Macros

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

macros

85

Preamble

Contents

6.1 Preamble 85

6.2 Definitions 85

6.3 Runaway arguments 95

6.4 Introspection 96

6.5 nesting 97

6.6 Prefixes 100

6.7 Arguments 102

6.8 Constants 103

6.1 Preamble

This chapter overlaps with other chapters but brings together some extensions to the

macro definition and expansion parts. As these mechanisms were stepwise extended,

the other chapters describe intermediate steps in the development.

Now, in spite of the extensions discussed here the main ides is still that we have TEX

act like before. We keep the charm of the macro language but these additions make for

easier definitions, but (at least initially) none that could not be done before using more

code.

6.2 Definitions

A macro definition normally looks like like this:6

\def\macro#1#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Such a macro can be used as:

\macro {1}{2}

\macro {1} {2} middle space gobbled

\macro 1 {2} middle space gobbled

\macro {1} 2 middle space gobbled

\macro 1 2 middle space gobbled

We show the result with some comments about how spaces are handled:

6 The \dontleavehmode command make the examples stay on one line.

86

Definitions

12

12 middle space gobbled

12 middle space gobbled

12 middle space gobbled

12 middle space gobbled

A definition with delimited parameters looks like this:

\def\macro[#1]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\hss}}

When we use this we get:

\macro [1]

\macro [1] leading space kept

\macro [1] trailing space kept

\macro [1] both spaces kept

Again, watch the handling of spaces:

1

1 leading space kept

1 trailing space kept

1 both spaces kept

Just for the record we show a combination:

\def\macro[#1]#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this:

\macro [1]{2}

\macro [1] {2}

\macro [1] 2

we can again see the spaces go away:

12

12

12

A definition with two separately delimited parameters is given next:

\def\macro[#1#2]%

87

Definitions

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

When used:

\macro [12]

\macro [12] leading space gobbled

\macro [12] trailing space kept

\macro [12] leading space gobbled, trailing space kept

\macro [1 2] middle space kept

\macro [1 2] leading space gobbled, middle and trailing space kept

We get ourselves:

12

12 leading space gobbled

12 trailing space kept

12 leading space gobbled, trailing space kept

1 2 middle space kept

1 2 leading space gobbled, middle and trailing space kept

These examples demonstrate that the engine does some magic with spaces before (and

therefore also between multiple) parameters.

We will now go a bit beyond what traditional TEX engines do and enter the domain of

LuaMetaTEX specific parameter specifiers. We start with one that deals with this hard

coded space behavior:

\def\macro[#^#^]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The #^ specifier will count the parameter, so here we expect again two arguments but

the space is kept when parsing for them.

\macro [12]

\macro [12]

\macro [12]

\macro [12]

\macro [1 2]

\macro [1 2]

Now keep in mind that we could deal well with all kind of parameter handling in Con­

TEXt for decades, so this is not really something wemissed, but it complements the to be

discussed other ones and it makes sense to have that level of control. Also, availability

triggers usage. Nevertheless, some day the #^ specifier will come in handy.

88

Definitions

12

12

12

12

1 2

1 2

We now come back to an earlier example:

\def\macro[#1]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

When we use this we see that the braces in the second call are removed:

\macro [1]

\macro [{1}]

1 1

This can be prohibited by the #+ specifier, as in:

\def\macro[#+]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

As we see, the braces are kept:

\macro [1]

\macro [{1}]

Again, we could easily get around that (for sure intended) side effect but it just makes

nicer code when we have a feature like this.

1 {1}

Sometimes you want to grab an argument but are not interested in the results. For this

we have two specifiers: one that just ignores the argument, and another one that keeps

counting but discards it, i.e. the related parameter is empty.

\def\macro[#1][#0][#3][#-][#4]%

{\dontleavehmode\hbox spread 1em

{\vl\type{#1}\vl\type{#2}\vl\type{#3}\vl\type{#4}\vl\hss}}

The second argument is empty and the fourth argument is simply ignored which is why

we need #4 for the fifth entry.

89

Definitions

\macro [1][2][3][4][5]

Here is proof that it works:

135

The reasoning behind dropping arguments is that for some cases we get around the

nine argument limitation, but more important is that we don't construct token lists that

are not used, which is more memory (and maybe even cpu cache) friendly.

Spaces are always kind of special in TEX, so it will be no surprise that we have another

specifier that relates to spaces.

\def\macro[#1]#*[#2]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

This permits usage like the following:

\macro [1][2]

\macro [1] [2]

12 12

Without the optional ‘grab spaces’ specifier the second line would possibly throw an

error. This because TEX then tries to match][so the] [in the input is simply added

to the first argument and the next occurrence of][will be used. That one can be

someplace further in your source and if not TEX complains about a premature end of

file. But, with the #* option it works out okay (unless of course you don't have that

second argument [2].

Now, you might wonder if there is a way to deal with that second delimited argument

being optional and of course that can be programmed quite well in traditional macro

code. In fact, ConTEXt does that a lot because it is set up as a parameter driven system

with optional arguments. That subsystem has been optimized to the max over years

and it works quite well and performance wise there is very little to gain. However, as

soon as you enable tracing you end up in an avalanche of expansions and that is no fun.

This time the solution is not in some special specifier but in the way a macro gets de­

fined.

\tolerant\def\macro[#1]#*[#2]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The magic \tolerant prefix with delimited arguments and just quits when there is no

match. So, this is acceptable:

90

Definitions

\macro [1][2]

\macro [1] [2]

\macro [1]

\macro

12 12 1

We can check how many arguments have been processed with a dedicated conditional:

\tolerant\def\macro[#1]#*[#2]%

{\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

We use this test:

\macro [1][2] \macro [1] [2] \macro [1] \macro

The result is: 2: 12 2: 12 1: 10: which is what we expect because we flush inline and

there is no change of mode. When the following definition is used in display mode, the

leading n= can for instance start a new paragraph and when code in \everypar you can

loose the right number when macros get expanded before the n gets injected.

\tolerant\def\macro[#1]#*[#2]%

{n=\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

In addition to the \ifarguments test primitive there is also a related internal counter

\lastarguments set that you can consult, so the \ifarguments is actually just a shortcut

for \ifcase\lastarguments.

We now continue with the argument specifiers and the next two relate to this optional

grabbing. Consider the next definition:

\tolerant\def\macro#1#*#2%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this test:

\macro {1} {2}

\macro {1}

\macro

We get:

12 1\macro

91

Definitions

This is okay because the last \macro is a valid (single token) argument. But, we can

make the braces mandate:

\tolerant\def\macro#=#*#=%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Here the #= forces a check for braces, so:

\macro {1} {2}

\macro {1}

\macro

gives this:

12 1

However, we do loose these braces and sometimes you don't want that. Of course when

you pass the results downstream to another macro you can always add them, but it was

cheap to add a related specifier:

\tolerant\def\macro#_#*#_%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Again, the magic \tolerant prefix works will quit scanning when there is no match.

So:

\macro {1} {2}

\macro {1}

\macro

leads to:

{1}{2} {1}

When you're tolerant it can be that you still want to pick up some argument later on.

This is why we have a continuation option.

\tolerant\def\foo [#1]#*[#2]#:#3{!#1!#2!#3!}

\tolerant\def\oof[#1]#*[#2]#:(#3)#:#4{!#1!#2!#3!#4!}

\tolerant\def\ofo [#1]#:(#2)#:#3{!#1!#2!#3!}

Hopefully the next example demonstrates how it works:

\foo{3} \foo[1]{3} \foo[1][2]{3}

92

Definitions

\oof{4} \oof[1]{4} \oof[1][2]{4}

\oof[1][2](3){4} \oof[1](3){4} \oof(3){4}

\ofo{3} \ofo[1]{3}

\ofo[1](2){3} \ofo(2){3}

As you can see we can have multiple continuations using the #: directive:

!!!3! !1!!3! !1!2!3!

!!!!4! !1!!!4! !1!2!!4!

!1!2!3!4! !1!!3!4! !!!3!4!

!!!3! !1!!3!

!1!2!3! !!2!3!

The last specifier doesn't work well with the \ifarguments state because we no longer

know what arguments were skipped. This is why we have another test for arguments.

A zero value means that the next token is not a parameter reference, a value of one

means that a parameter has been set and a value of two signals an empty parameter.

So, it reports the state of the given parameter as a kind if \ifcase.

\def\foo#1#2{ [\ifparameter#1\or(ONE)\fi\ifparameter#2\or(TWO)\fi] }

Of course the test has to be followed by a valid parameter specifier:

\foo{1}{2} \foo{1}{} \foo{}{2} \foo{}{}

The previous code gives this:

[(ONE)(TWO)] [(ONE)] [(TWO)] []

A combination check \ifparameters, again a case, matches the first parameter that

has a value set.

We could add plenty of specifiers but we need to keep in ind that we're not talking of an

expression scanner. We need to keep performance in mind, so nesting and backtracking

are no option. We also have a limited set of useable single characters, but here's one

that uses a symbol that we had left:

\def\startfoo[#/]#/\stopfoo{ [#1](#2) }

The slash directive removes leading and trailing so called spacers as well as tokens that

represent a paragraph end:

\startfoo [x] x \stopfoo

\startfoo [x] x \stopfoo

93

Definitions

\startfoo [x] x \stopfoo

\startfoo [x] \par x \par \par \stopfoo

So we get this:

x x x x

The next directive, the quitter #;, is demonstrated with an example. When no match

has occurred, scanning picks up after this signal, otherwise we just quit.

\tolerant\def\foo[#1]#;(#2){/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo[#1]#;#={/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;#2{/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;(#2)#;#={/#1/#2/#3/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1/// /2/// /3///

//1// //2// //3//

///1/ ///2/ ///3/

I have to admit that I don't really need it but it made some macros that I was redefining

behave better, so there is some self-interest here. Anyway, I considered some other

features, like picking up a detokenized argument but I don't expect that to be of much

94

Definitions

use. In the meantime we ran out of reasonable characters, but some day #? and #!

might show up, or maybe I find a use for #< and #>. A summary of all this is given here:

+ keep the braces

- discard and don't count the argument

/ remove leading an trailing spaces and pars

= braces are mandate

_ braces are mandate and kept

^ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

: pick up scanning here

; quit scanning

. ignore pars and spaces

, push back space when quit

The last two have not been discussed andwere added later. The period directive gobbles

space and par tokens and discards them in the process. The comma directive is like *

but it pushes back a space when the matching quits.

\tolerant\def\foo[#1]#;(#2){/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo[#1]#;#={/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;#2{/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;(#2)#;#={/#1/#2/#3/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

95

Runaway arguments

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1/// /2/// /3///

//1// //2// //3//

///1/ ///2/ ///3/

Gobbling spaces versus pushing back is an interface design decision because it has to

do with consistency.

6.3 Runaway arguments

There is a particular troublesome case left: a runaway argument. The solution is not

pretty but it's the only way: we need to tell the parser that it can quit.

\tolerant\def\foo[#1=#2]%

{\ifarguments 0\or 1\or 2\or 3\or 4\fi:\vl\type{#1}\vl\type{#2}\vl}

The outcome demonstrates that one still has to do some additional checking for sane

results and there are alternative way to (ab)use this mechanism. It all boils down to a

clever combination of delimiters and \ignorearguments.

\dontleavehmode \foo[a=1]

\dontleavehmode \foo[b=]

\dontleavehmode \foo[=]

\dontleavehmode \foo[x]\ignorearguments

All calls are accepted:

2:a1

2:b

2:

1:x]

Just in case you wonder about performance: don't expect miracles here. On the one

hand there is some extra overhead in the engine (when defining macros as well as

when collecting arguments during a macro call) and maybe using these new features

can sort of compensate that. As mentioned: the gain is mostly in cleaner macro code

and less clutter in tracing. And I just want the ConTEXt code to look nice: that way users

96

Introspection

can look in the source to see what happens and not drown in all these show-off tricks,

special characters like underscores, at signs, question marks and exclamation marks.

For the record: I normally run tests to see if there are performance side effects and

as long as processing the test suite that has thousands of files of all kind doesn't take

more time it's okay. Actually, there is a little gain in ConTEXt but that is to be expected,

but I bet users won't notice it, because it's easily offset by some inefficient styling. Of

course another gain of loosing some indirectness is that error messages point to the

macro that the user called for and not to some follow up.

6.4 Introspection

A macro has a meaning. You can serialize that meaning as follows:

\tolerant\protected\def\foo#1[#2]#*[#3]%

{(1=#1) (2=#3) (3=#3)}

\meaning\foo

The meaning of \foo comes out as:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

When you load the module system-tokens you can also say:

\luatokentable\foo

This produces a table of tokens specifications:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

tolerant protected control sequence: foo

543628 19 49 match argument 1

543398 12 91 other char [U+0005B

540301 19 50 match argument 2

543764 12 93 other char] U+0005D

543787 19 42 match argument *

543814 12 91 other char [U+0005B

543226 19 51 match argument 3

543231 12 93 other char] U+0005D

543989 20 0 end match

540278 12 40 other char (U+00028

97

nesting

543734 12 49 other char 1 U+00031

461605 12 61 other char = U+0003D

539284 21 1 parameter reference

544622 12 41 other char) U+00029

544576 10 32 spacer

542952 12 40 other char (U+00028

540508 12 50 other char 2 U+00032

544645 12 61 other char = U+0003D

540329 21 3 parameter reference

543682 12 41 other char) U+00029

543079 10 32 spacer

543592 12 40 other char (U+00028

542823 12 51 other char 3 U+00033

544639 12 61 other char = U+0003D

543685 21 3 parameter reference

543864 12 41 other char) U+00029

A token list is a linked list of tokens. The magic numbers in the first column are the

tokenmemory pointers. and becausemacros (and token lists) get recycled at some point

the available tokens get scattered, which is reflected in the order of these numbers.

Normally macros defined in the macro package are more sequential because they stay

around from the start. The second and third row show the so called command code and

the specifier. The command code groups primitives in categories, the specifier is an

indicator of what specific action will follow, a register number a reference, etc. Users

don't need to know these details. This macro is a special version of the online variant:

\showluatokens\foo

That one is always available and shows a similar list on the console. Again, users nor­

mally don't want to know such details.

6.5 nesting

You can nest macros, as in:

\def\foo#1#2{\def\oof##1{<#1>##1<#2>}}

At first sight the duplication of # looks strange but this is what happens. When TEX

scans the definition of \foo it sees two arguments. Their specification ends up in the

preamble that defines the matching. When the body is scanned, the #1 and #2 are

turned into a parameter reference. In order to make nested macros with arguments

98

nesting

possible a # followed by another # becomes just one #. Keep in mind that the definition

of \oof is delayed till the macro \foo gets expanded. That definition is just stored and

the only thing that get's replaced are the two references to a macro parameter

control sequence: foo

543973 19 49 match argument 1

539345 19 50 match argument 2

543765 20 0 end match

544064 121 1 def def

543087 140 0 tolerant call oof

542586 6 35 parameter

542737 12 49 other char 1 U+00031

544000 1 123 left brace

540363 12 60 other char < U+0003C

179409 21 1 parameter reference

463017 12 62 other char > U+0003E

544834 6 35 parameter

543299 12 49 other char 1 U+00031

373598 12 60 other char < U+0003C

540351 21 2 parameter reference

544036 12 62 other char > U+0003E

543503 2 125 right brace

Now, when we look at these details, it might become clear why for instance we have

‘variable’ names like #4 and not #whatever (with or without hash). Macros are essen­

tially token lists and token lists can be seen as a sequence of numbers. This is not

that different from other programming environments. When you run into buzzwords

like ‘bytecode’ and ‘virtual machines’ there is actually nothing special about it: some

high level programming (using whatever concept, and in the case of TEX it's macros)

eventually ends up as a sequence of instructions, say bytecodes. Then you need some

machinery to run over that and act upon those numbers. It's something you arrive at

naturally when you play with interpreting languages.7

So, internally a #4 is just one token, a operator-operand combination where the operator

is “grab a parameter” and the operand tells “where to store” it. Using names is of course

7 I actually did when I wrote an interpreter for some computer assisted learning system, think of a kind of

interpreted Pascal, but later realized that it was a a bytecode plus virtual machine thing. I'd just applied

what I learned when playing with eight bit processors that took bytes, and interpreted opcodes and such.

There's nothing spectacular about all this and I only realized decades later that the buzzwords describes

old natural concepts.

99

nesting

an option but then one has to do more parsing and turn the name into a number8, add

additional checking in the macro body, figure out some way to retain the name for the

purpose of reporting (which then uses more token memory or strings). It is simply not

worth the trouble, let alone the fact that we loose performance, and when TEX showed

up those things really mattered.

It is also important to realize that a # becomes either a preamble token (grab an argu­

ment) or a reference token (inject the passed tokens into a new input level). Therefore

the duplication of hash tokens ## that you see in macro nested bodies also makes sense:

it makes it possible for the parser to distinguish between levels. Take:

\def\foo#1{\def\oof##1{#1##1#1}}

Of course one can think of this:

\def\foo#fence{\def\oof#text{#fence#text#fence}}

But such names really have to be unique then! Actually ConTEXt does have an input

method that supports such names, but discussing it here is a bit out of scope. Now,

imagine that in the above case we use this:

\def\foo[#1][#2]{\def\oof##1{#1##1#2}}

If you're a bit familiar with the fact that TEX has a model of category codes you can

imagine that a predictable “hash followed by a number” is way more robust than en­

forcing the user to ensure that catcodes of ‘names’ are in the right category (read: is

a bracket part of the name or not). So, say that we go completely arbitrary names, we

then suddenly needs some escaping, like:

\def\foo[#{left}][#{right}]{\def\oof#{text}{#{left}#{text}#{right}}}

And, if you ever looked into macro packages, you will notice that they differ in the

way they assign category codes. Asking users to take that into account when defining

macros makes not that much sense.

So, before one complains about TEX being obscure (the hash thing), think twice. Your

demand for simplicity for your coding demand will make coding more cumbersome for

the complex cases that macro packages have to deal with. It's comparable using TEX for

input or using (say) mark down. For simple documents the later is fine, but when things

become complex, you end up with similar complexity (or even worse because you lost

8 This is kind of what MetaPost does with parameters to macros. The side effect is that in reporting you get

text0, expr2 and such reported which doesn't make things more clear.

100

Prefixes

the enforced detailed structure). So, just accept the unavoidable: any language has its

peculiar properties (and for sure I do know why I dislike some languages for it). The

TEX system is not the only one where dollars, percent signs, ampersands and hashes

have special meaning.

6.6 Prefixes

Traditional TEX has three prefixes that can be used with macros: \global, \outer and

\long. The last two are no-op's in LuaMetaTEX and if you want to know what they do

(did) you can look it up in the TEXbook. The 𝜀-TEX extension gave us \protected.

In LuaMetaTEX we have \global, \protected, \tolerant and overload related prefixes

like \frozen. A protected macro is one that doesn't expand in an expandable context,

so for instance inside an \edef. You can force expansion by using the \expand primitive

in front which is also something LuaMetaTEX.

Frozenmacros cannot be redefined without some effort. This feature can to some extent

be used to prevent a user from overloading, but it also makes it harder for the macro

package itself to redefine on the fly. You can remove the lock with \unletfrozen and

add a lock with \letfrozen so in the end users still have all the freedoms that TEX

normally provides.

\def\foo{foo} 1: \meaning\foo

\frozen\def\foo{foo} 2: \meaning\foo

\unletfrozen \foo 3: \meaning\foo

\protected\frozen\def\foo{foo} 4: \meaning\foo

\unletfrozen \foo 5: \meaning\foo

1: macro:foo

2: macro:foo

3: macro:foo

4: protected macro:foo

5: protected macro:foo

This actually only works when you have set \overloadmode to a value that permits

redefining a frozen macro, so for the purpose of this example we set it to zero.

A \tolerant macro is one that will quit scanning arguments when a delimiter cannot

be matched. We saw examples of that in a previous section.

These prefixes can be chained (in arbitrary order):

\frozen\tolerant\protected\global\def\foo[#1]#*[#2]{...}

101

Prefixes

There is actually an additional prefix, \immediate but that one is there as signal for a

macro that is defined in and handled by Lua. This prefix can then perform the same

function as the one in traditional TEX, where it is used for backend related tasks like

\write.

Now, the question is of course, to what extent will ConTEXt use these new features.

One important argument in favor of using \tolerant is that it gives (hopefully) better

error messages. It also needs less code due to lack of indirectness. Using \frozen adds

some safeguards although in some places where ConTEXt itself overloads commands,

we need to defrost. Adapting the code is a tedious process and it can introduce errors

due to mistypings, although these can easily be fixed. So, it will be used but it will take

a while to adapt the code base.

One problem with frozen macros is that they don't play nice with for instance \fu­

turelet. Also, there are places in ConTEXt where we actually do redefine some core

macro that we also want to protect from redefinition by a user. One can of course \un­

letfrozen such a command first but as a bonus we have a prefix \overloaded that can

be used as prefix. So, one can easily redefine a frozen macro but it takes a little effort.

After all, this feature is mainly meant to protect a user for side effects of definitions,

and not as final blocker.9

A frozen macro can still be overloaded, so what if we want to prevent that? For this we

have the \permanent prefix. Internally we also create primitives but we don't have a

prefix for that. But we do have one for a very special case which we demonstrate with

an example:

\def\FOO % trickery needed to pick up an optional argument

{\noalign{\vskip10pt}}

\noaligned\protected\tolerant\def\OOF[#1]%

{\noalign{\vskip\iftok{#1}\emptytoks10pt\else#1\fi}}

\starttabulate[|l|l|]

\NC test \NC test \NC \NR

\NC test \NC test \NC \NR

\FOO

\NC test \NC test \NC \NR

\OOF[30pt]

9 As usual adding features like this takes some experimenting and we're now at the third variant of the

implementation, so we're getting there. The fact that we can apply such features in large macro package

like ConTEXt helps figuring out the needs and best approaches.

102

Arguments

\NC test \NC test \NC \NR

\OOF

\NC test \NC test \NC \NR

\stoptabulate

When TEX scans input (from a file or token list) and starts an alignment, it will pick up

rows. When a row is finished it will look ahead for a \noalign and it expands the next

token. However, when that token is protected, the scanner will not see a \noalign in

that macro so it will likely start complaining when that next macro does get expanded

and produces a \noalign when a cell is built. The \noaligned prefix flags a macro as

being one that will do some \noalign as part of its expansion. This trick permits clean

macros that pick up arguments. Of course it can be done with traditional means but

this whole exercise is about making the code look nice.

The table comes out as:

test test

test test

test test

test test

test test

One can check the flags with \ifflags which takes a control sequence and a number,

where valid numbers are:

1 frozen 2 permanent 4 immutable 8 primitive

16 mutable 32 noaligned 64 instance

The level of checking is controlled with the \overloadmode but I'm still not sure about

how many levels we need there. A zero value disables checking, the values 1 and 3 give

warnings and the values 2 and 4 trigger an error.

6.7 Arguments

The number of arguments that a macro takes is traditionally limited to nine (or ten if one

takes the trailing # into account). That this is enough for most cases is demonstrated

by the fact that ConTEXt has only a handful of macros that use #9. The reason for

this limitation is in part a side effect of the way the macro preamble and arguments are

parsed. However, because in LuaMetaTEX we use a different implementation, it was not

103

Constants

that hard to permit a few more arguments, which is why we support upto 15 arguments,

as in:

\def\foo#1#2#3#4#5#6#7#8#9#A#B#C#D#E#F{...}

We can support the whole alphabet without much trouble but somehow sticking to the

hexadecimal numbers makes sense. It is unlikely that the core of ConTEXt will use

this option but sometimes at the user level it can be handy. The penalty in terms of

performance can be neglected.

\tolerant\def\foo#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=%

{(#1)(#2)(#3)(#4)(#5)(#6)(#7)(#8)(#9)(#A)(#B)(#C)(#D)(#E)(#F)}

\foo{1}{2}

In the previous example we have 15 optional arguments where braces are mandate

(otherwise we the scanner happily scoops up what follows which for sure gives some

error).

6.8 Constants

The LuaMetaTEX engine has lots of efficiency tricks in the macro parsing and expansion

code that makes it not only fast but also let is use less memory. However, every time that

the body of a macro is to be injected the expansion machinery kicks in. This often means

that a copy is made (pushed in the input and used afterwards). There are however cases

where the body is just a list of character tokens (with category letter or other) and no

expansion run over the list is needed.

It is tempting to introduce a string data type that just stores strings and although that

might happen at some point it has the disadvantage that one need to tokenize that string

in order to be able to use it, which then defeats the gain. An alternative has been found

in constant macros, that is: a macro without parameters and a body that is considered

to be expanded and never freed by redefinition. There are two variants:

\cdef \foo {whatever}

\cdefcsname foo\endcsname{whatever}

These are actually just equivalents to

\edef \foo {whatever}

\edefcsname foo\endcsname{whatever}

just tomake sure that the body gets expanded at definition time but they are alsomarked

as being constant which in some cases might give some gain, for instance when used in

104

Colofon

csname construction. The gain is less then one expects although there are a few cases

in ConTEXt where extreme usage of parameters benefits from it. Users are unlikely to

use these two primitives.

Another example of a constant usage is this:

\lettonothing\foo

which gives \foo an empty body. That one is used in the core, if only because it gives a

bit smaller code. Performance is no that different from

\let\foo\empty

but it saves one token (8 bytes) when used in a macro. The assignment itself is not that

different because \foo is made an alias to \emptywhich in turn only needs incrementing

a reference counter.

6.8 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

105

7 Grouping

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

grouping

106

Introduction

Contents

7.1 Introduction 106

7.2 Pascal 106

7.3 TEX 106

7.4 MetaPost 107

7.5 Lua 108

7.6 C 108

7.1 Introduction

This is a rather short explanation. I decided to write it after presenting the other topics

at the 2019 ConTEXt meeting where there was a question about grouping.

7.2 Pascal

In a language like Pascal, the language that TEX has been written in, or Modula, its

successor, there is no concept of grouping like in TEX. But we can find keywords that

suggests this:

for i := 1 to 10 do begin ... end

This language probably inspired some of the syntax of TEX and MetaPost. For instance

an assignment in MetaPost uses := too. However, the begin and end don't really group

but define a block of statements. You can have local variables in a procedure or function

but the block is just a way to pack a sequence of statements.

7.3 TEX

In TEX macros (or source code) the following can occur:

\begingroup

...

\endgroup

as well as:

\bgroup

...

\egroup

107

MetaPost

Here we really group in the sense that assignments to variables inside a group are

forgotten afterwards. All assignments are local to the group unless they are explicitly

done global:

\scratchcounter=1

\def\foo{foo}

\begingroup

\scratchcounter=2

\global\globalscratchcounter=2

\gdef\foo{FOO}

\endgroup

Here \scratchcounter is still one after the group is left but its global counterpart is

now two. The \foo macro is also changed globally.

Although you can use both sets of commands to group, you cannot mix them, so this

will trigger an error:

\bgroup

\endgroup

The bottomline is: if you want a value to persist after the group, you need to explicitly

change its value globally. This makes a lot of sense in the perspective of TEX.

7.4 MetaPost

The MetaPost language also has a concept of grouping but in this case it's more like a

programming language.

begingroup ;

n := 123 ;

engroup ;

In this case the value of n is 123 after the group is left, unless you do this (for numerics

there is actually no need to declare them):

begingroup ;

save n ; numeric n ; n := 123 ;

engroup ;

Given the use of MetaPost (read: MetaFont) this makes a lot of sense: often you use

macros to simplify code and you do want variables to change. Grouping in this language

108

Lua

serves other purposes, like hiding what is between these commands and let the last

expression become the result. In a vardef grouping is implicit.

So, in MetaPost all assignments are global, unless a variable is explicitly saved inside a

group.

7.5 Lua

In Lua all assignments are global unless a variable is defines local:

local x = 1

local y = 1

for i = 1, 10 do

local x = 2

y = 2

end

Here the value of x after the loop is still one but y is now two. As in LuaTEX we mix TEX,

MetaPost and Lua you can mix up these concepts. Another mixup is using :=, endfor,

fi in Lua after done some MetaPost coding or using end instead of endfor in MetaPost

which can make the library wait for more without triggering an error. Proper syntax

highlighting in an editor clearly helps.

7.6 C

The Lua language is a mix between Pascal (which is one reason why I like it) and C.

int x = 1 ;

int y = 1 ;

for (i=1; i<=10;i++) {

int x = 2 ;

y = 2 ;

}

The semicolon is also used in Pascal but there it is a separator and not a statement end,

while in MetaPost it does end a statement (expression).

109

Colofon

7.6 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

110

8 Security

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

security

111

Preamble

Contents

8.1 Preamble 111

8.2 Flags 111

8.3 Complications 114

8.4 Introspection 115

8.1 Preamble

Here I will discuss a moderate security subsystem of LuaMetaTEX and therefore Con­

TEXt LMTX. This is not about security in the sense of the typesetting machinery doing

harm to your environment, but more about making sure that a user doesn't change

the behavior of the macro package in ways that introduce interference and thereby

unwanted side effect. It's all about protecting macros.

This is all very experimental and we need to adapt the ConTEXt source code to this.

Actually that will happen a few times because experiments trigger that. It might take

a few years before the security model is finalized and all files are updated accordingly.

There are lots of files and macros involved. In the process the underlying features in

the engine might evolve.

8.2 Flags

Before we go into the security levels we see what flags can be set. The TEX language

has a couple of so called prefixes that can be used when setting values and defining

macros. Any engine that has traditional TEX with 𝜀-TEX extensions can do this:

\def\foo{foo}

\global \def\foo{foo}

\global\protected\def\foo{foo}

And LuaMetaTEX adds another one:

\tolerant \def\foo{foo}

\global\tolerant \def\foo{foo}

\global\tolerant\protected\def\foo{foo}

What these prefixes do is discussed elsewhere. For now is is enough to know that

the two optional prefixes \protected and \tolerant make for four distinctive cases of

macro calls.

112

Flags

But there are more prefixes:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant

mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted

enforced all is permitted (but only in zero mode or ini mode)

aliased the macro gets the same flags as the original

These prefixed set flags to the command at hand which can be a macro but basically

any control sequence.

To what extent the engine will complain when a property is changed in a way that

violates the above depends on the parameter \overloadmode. When this parameter is

set to zero no checking takes place. More interesting are values larger than zero. If

that is the case, when a control sequence is flagged as mutable, it is always permitted to

change. When it is set to immutable one can never change it. The other flags determine

the kind of checking done. Currently the following overload values are used:

immutable permanent primitive frozen instance

1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. In ConTEXt we plug in a callback that

deals with the messages. A value of 255 will freeze this parameter. At level five and

above the instance flag is also checked but no drastic action takes place. We use this

to signal to the user that a specific instance is redefined (of course the definition macros

can check for that too).

So, how does it work. The following is okay:

\def\MacroA{A}

\def\MacroB{B}

113

Flags

\let\MyMacro\MacroA

\let\MyMacro\MacroB

The first two macros are ordinary ones, and the last two lines just create an alias. Such

an alias shares the definition, but when for instance \MacroA is redefined, its newmean­

ing will not be reflected in the alias.

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\let\MyMacro\MacroA

\let\MyMacro\MacroB

This also works, because the \let will create an alias with the protected property but

it will not take the permanent propery along. For that we need to say:

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\permanent\let\MyMacro\MacroA

\permanent\let\MyMacro\MacroB

or, when we want to copy all properties:

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\aliased\let\MyMacro\MacroA

\aliased\let\MyMacro\MacroB

However, in ConTEXt we have commands that we like to protect against overloading but

at the same time have a different meaning depending on the use case. An example is

the \NC (next column) command that has a different implementation in each of the table

mechanisms.

\permanent\protected\def\NC_in_table {...}

\permanent\protected\def\NC_in_tabulate{...}

\aliased\let\NC\NC_in_table

\aliased\let\NC\NC_in_tabulate

Here the second aliasing of \NC fails (assuming of course that we enabled overload

checking). One can argue that grouping can be used but often no grouping takes place

when we redefine on the fly. Because frozen is less restrictive than primitive or

permanent, and of course immutable, the next variant works:

\frozen\protected\def\NC_in_table {...}

114

Complications

\frozen\protected\def\NC_in_tabulate{...}

\overloaded\let\NC\NC_in_table

\overloaded\let\NC\NC_in_tabulate

However, in practice, as we want to keep the overload checking, we have to do:

\frozen\protected\def\NC_in_table {...}

\frozen\protected\def\NC_in_tabulate{...}

\overloaded\frozen\let\NC\NC_in_table

\overloaded\frozen\let\NC\NC_in_tabulate

or use \aliased, but there might be conflicting permissions. This is not that nice, so

there is a kind of dirty trick possible. Consider this:

\frozen\protected\def\NC_in_table {...}

\frozen\protected\def\NC_in_tabulate{...}

\def\setNCintable {\enforced\let\frozen\let\NC\NC_in_table}

\def\setNCintabulate{\enforced\let\frozen\let\NC\NC_in_tabulate}

When we're in so called initexmode or when the overload mode is zero, the \enforced

prefix is internalized in a way that signals that the follow up is not limited by the overload

mode and permissions. This definition time binding mechanism makes it possible to use

permanentmacros that users cannot redefine, but existing macros can, unless of course

they tweak the mode parameter.

Now keep in mind that users can always cheat but that is intentional. If you really want

to avoid that you can set the overload mode to 255 after which it cannot be set any

more. However, it can be useful to set the mode to zero (or some warning level) when

foreign macro packages are used.

8.3 Complications

One side effect of all this is that all those prefixes can lead to more code. On the other

hand we save some due to the extended macro argument handling features. When you

take the size of the format file as reference, in the end we get a somewhat smaller file.

Every token that you add of remove gives a 8 bytes difference. The extra overhead that

got added to the engine is compensated by the fact that some macro implementations

can be more efficient. In the end, in spite of these new features and the more extensive

testing of flags performance is about the same.10

10 And if you wonder about memory, by compacting the used (often scattered) token memory before dumping

I manages to save some 512K on the format file, so often the loss and gain are somewhere else.

115

Introspection

8.4 Introspection

In case you want to get some details about the properties of a macro, you can check its

meaning. The full variant shows all of them.

% a macro with two optional arguments with optional spacing in between:

\permanent\tolerant\protected\def\MyFoo[#1]#*[#2]{(#1)(#2)}

\meaningless\MyFoo\par

\meaning \MyFoo\par

\meaningfull\MyFoo\par

[#1]#*[#2]->(#1)(#2)

tolerant protected macro:[#1]#*[#2]->(#1)(#2)

permanent tolerant protected macro:[#1]#*[#2]->(#1)(#2)

8.4 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

116

9 Characters

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

characters

117

Introduction

Contents

9.1 Introduction 117

9.2 History 117

9.3 The heritage 118

9.4 The LMTX approach 119

9.1 Introduction

This explanation is part of the low level manuals because in practice users will not have

to deal with these matters in MkIV and even less in LMTX. You can skip to the last

section for commands.

9.2 History

If we travel back in time to when TEX was written we end up in eight bit character

universe. In fact, the first versions assumed seven bits, but for comfortable use with

languages other than English that was not sufficient. Support for eight bits permits the

usage of so called code pages as supported by operating systems. Although ascii input

became kind of the standard soon afterwards, the engine can be set up for different

encodings. This is not only true for TEX, but for many of its companions, like MetaFont

and therefore MetaPost.11

Core components of a TEX engine are hyphenation of words, applying inter-character

kerns and build ligatures. In traditional TEX engines those processes are interwoven

into the par builder but in LuaTEX these are separate stages. The original approach is

the reason that there is a relation between the input encoding and the font encoding:

the character in the input is the slot used in a reference to a glyph. When producing

the final result (e.g. pdf) there can also be a mapping to an index in a font resource.

input A [tex ->] font slot A [backend ->] glyph index A

The mapping that TEX does is normally one-to-one but an input character can undergo

some transformation. For instance a character beyond ascii 126 can be made active

and expand to some character number that then becomes the font slot. So, it is the

expansion (or meaning) of a character that end up as numeric reference in the glyph

11 This remapping to an internal representation (e.g. ebcdic) is not present in LuaTEX where we assume

utf8 to be the input encoding. The MetaPost library that comes with LuaTEX still has that code but in

LuaMetaTEX it's gone. There one can set up the machinery to be utf8 aware too.

118

The heritage

node. Virtual fonts can introduce yet another remapping but that's only visible in the

backend.

Actually, in LuaTEX the same happens but in practice there is no need to go active

because (at least in ConTEXt) we assume a Unicode path so there the font slot is the

Unicode got from the utf8 input.

In the eight bit universe macro packages (have to) provide all kind of means to deal

with (in the perspective of English) special characters. For instance, \"a would put

a diaeresis on top of the a or even better, refer to a character in the encoding that

the chosen font provides. Because there are some limitations of what can go in an

eight bit font, and because in different countries the used TEX fonts evolved kind of

independent, we ended up with quite some different variants of fonts. It was only with

the Latin Modern project that this became better. Interesting is that when we consider

the fact that such a font has often also hardly used symbols (like registered or copyright)

coming up with an encoding vector that covers most (latin based) European languages

(scripts) is not impossible12 Special symbols could simply go into a dedicated font, also

because these are always accessed via a macro so who cares about the input. It never

happened.

Keep in mind that when utf8 is used with eight bit engines, ConTEXt will convert se­

quences of characters into a slot in a font (depending on the font encoding used which

itself depends on the coverage needed). For this every first (possible) byte of a multi­

byte utf sequence is an active character, which is no big deal because these are outside

the ascii range. Normal ascii characters are single byte utf sequences and fall through

without treatment.

Anyway, in ConTEXt MkII we dealt with this by supporting mixed encodings, depending

on the (local) language, referencing the relevant font. It permits users to enter the text

in their preferred input encoding and also get the words properly hyphenated. But we

can leave these MkII details behind.

9.3 The heritage

In MkIV we got rid of input and font encodings, although one can still load files in a

specific code page.13 We also kept the means to enter special characters, if only because

text editors seldom support(ed) a wide range of visual editing of those. This is why we

still have

12 And indeed in the Latin Modern project we came up with one but it was already to late for it to become

popular.
13 I'm not sure if users ever depend on an input encoding different from utf8.

119

The LMTX approach

\"u \^a \v{s} \AE \ij \eacute \oslash

and many more. The ones with one character names are rather common in the TEX

community but it is definitely a weird mix of symbols. The next two are kind of outdated:

in these days you delegate that to the font handler, where turning them into ‘single’

character references depends on what the font offers, how it is set up with respect to

(for instance) ligatures, and even might depend on language or script.

The ones with the long names partly are tradition, but as we have a lot of them, in MkII

they actually serve a purpose. These verbose names are used in the so called encoding

vectors and are part of the utf expansion vectors. They are also used in labels so that

we have a good indication if what goes in there: remember that in those times editors

often didn't show characters, unless the font for display had them, or the operating

system somehow provided them from another font. These verbose names are used for

latin, greek and cyrillic and for some other scripts and symbols. They take up quite a

bit of hash space and the format file.14

9.4 The LMTX approach

In the process of tagging all (public) macros in LMTX (which happened in 2020-2021)

I wondered if we should keep these one character macros, the references to special

characters and the verbose ones. When asked on the mailing list it became clear that

users still expect the short ones to be present, often just because old bibTEX files are

used that might need them. However, in MkIV and LMTX we load bibTEX files in a

way that turn these special character references into proper utf8 input so it makes a

weak argument. Anyway, although they could go, for now we keep them because users

expect them. However, in LMTX the implementation is somewhat different now, a bit

more efficient in terms of hash and memory, potentially a bit less efficient in runtime,

but no one will notice that.

A new command has been introduced, the very short \chr.

\chr {à} \chr {á} \chr {ä}

\chr {`a} \chr {'a} \chr {"a}

\chr {a acute} \chr {a grave} \chr {a umlaut}

\chr {aacute} \chr {agrave} \chr {aumlaut}

In the first line the composed character using two characters, a base and a so called

mark. Actually, one doesn't have to use \chr in that case because ConTEXt does already

14 In MkII we have an abstract front-end with respect to encodings and also an abstract backend with respect

to supported drivers but both approaches no longer make sense today.

120

The LMTX approach

collapse characters for you. The second line looks like the shortcuts \`, \' and \". The

third and fourth lines could eventually replace the more symbolic long names, if we feel

the need. Watch out: in Unicode input the marks come after.

à á ä

à á ä

á à a˘mła˘t

á à a˘mła˘t

Currently the repertoire is somewhat limited but it can be easily be extended. It all

depends on user needs (doing Greek and Cyrillic for instance). The reason why we

actually save code deep down is that the helpers for this have always been there.15

The \" commands are now just aliases tomore verbose and less hackery lookingmacros:

\withgrave à \` à

\withacute á \' á

\withcircumflex â \^ â

\withtilde ã \~ ã

\withmacron ā \= ā

\withbreve ĕ \u ĕ

\withdotaccent ċ \. .c

\withdiaeresis ë \" ë

\withring ů \r ů

\withhungarumlaut ű \H ű

\withcaron ě \v ě

\withcedilla ȩ \c ȩ

\withogonek ę \k ę

Not all fonts have these special characters. Most natural is to have them available as

precomposed single glyphs, but it can be that they are just two shapes with the marks

anchored to the base. It can even be that the font somehow overlays them, assuming

(roughly) equal widths. The compose font feature in ConTEXt normally can handle most

well.

An occasional ugly rendering doesn't matter that much: better have something than

nothing. But when it's the main language (script) that needs them you'd better look for

a font that handles them. When in doubt, in ConTEXt you can enable checking:

15 So if needed I can port this approach back to MkIV, but for now we keep it as is because we then have a

reference.

121

The LMTX approach

command equivalent to

\checkmissingcharacters \enabletrackers[fonts.missing]

\removemissingcharacters \enabletrackers[fonts.missing=remove]

\replacemissingcharacters \enabletrackers[fonts.missing=replace]

\handlemissingcharacters \enabletrackers[fonts.missing={decompose,replace}]

The decompose variant will try to turn a composed character into its components so

that at least you get something. If that fails it will inject a replacement symbol that

stands out so that you can check it. The console also mentions missing glyphs. You

don't need to enable this by default16 but you might occasionally do it when you use a

font for the first time.

In LMTX this mechanism has been upgraded so that replacements follow the shape and

are actually real characters. The decomposition has not yet been ported back to MkIV.

The full list of commands can be queried when a tracing module is loaded:

\usemodule[s][characters-combinations]

\showcharactercombinations

We get this list:

acute U+00301 ́ \withacute

breve U+00306 ̆ \withbreve

caron U+0030C ̌ \withcaron

caron below U+0032C ̬ \withcaronbelow

cedilla U+00327 ̧ \withcedilla

circumflex U+00302 ̂ \withcircumflex

circumflex below U+0032D ̭ \withcircumflexbelow

comma below U+00327 ̧ \withcommabelow

diaeresis U+00308 ̈ \withdiaeresis

dieresis U+00308 ̈ \withdieresis

dot U+00307 ̇ \withdot

dot below U+00323 ̣ \withdotbelow

double acute U+0030B ̋ \withdoubleacute

double grave U+0030F ̏ \withdoublegrave

double vertical line U+0030E ̎ \withdoubleverticalline

grave U+00300 ̀ \withgrave

hook U+00309 ̉ \withhook

16 There is some overhead involved here.

122

Colofon

hook below U+1FA9D \withhookbelow

hungarumlaut U+0030B ̋ \withhungarumlaut

inverted breve U+00311 ̑ \withinvertedbreve

line U+00304 ̄ \withline

line below U+00331 ̱ \withlinebelow

macron U+00304 ̄ \withmacron

macron below U+00331 ̱ \withmacronbelow

middle dot U+000B7 · \withmiddledot

ogonek U+00328 ̨ \withogonek

overline U+00305 ̅

ring U+0030A ̊ \withring

ring below U+00325 ̥ \withringbelow

slash U+0002F / \withslash

stroke U+0002F / \withstroke

tilde U+00303 ̃ \withtilde

tilde below U+00330 ̰ \withtildebelow

vertical line U+0030D ̍ \withverticalline

Some combinations are special for ConTEXt because Unicode doesn't specify decompo­

sition for all composed characters.

9.4 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

123

10 Scope

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

scope

124

Introduction

Contents

10.1 Introduction 124

10.2 Registers 124

10.3 Allocation 126

10.4 Files 129

10.1 Introduction

When I visited the file where register allocations are implemented I wondered to what

extend it made sense to limit allocation to global instances only. This chapter deals with

this phenomena.

10.2 Registers

In TEX definitions can be local or global. Most assignments are local within a group.

Registers and definitions can be assigned global by using the \global prefix. There

are also some properties that are global by design, like \prevdepth. A mixed breed are

boxes. When you tweak its dimensions you actually tweak the current box, which can

be an outer level. Compare:

\scratchcounter = 1

here the counter has value 1

\begingroup

\scratchcounter = 2

here the counter has value 2

\endgroup

here the counter has value 1

with:

\setbox\scratchbox=\hbox{}

here the box has zero width

\begingroup

\wd\scratchbox=10pt

here the box is 10pt wide

\endgroup

here the box is 10pt wide

It all makes sense so a remark like “Assignments to box dimensions are always global”

are sort of confusing. Just look at this:

125

Registers

\setbox\scratchbox=\hbox to 20pt{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\setbox\scratchbox=\hbox{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\wd\scratchbox=15pt

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide

here the box is 0.0pt wide

here the box is 15.0pt wide

here the box is 15.0pt wide

here the box is 20.0pt wide

If you don't think about it, what happens is what you expect. Now watch the next

variant:

The \global is only effective for the current box. It is good to realize that when we talk

registers, the box register behaves just like any other register but the manipulations

happen to the current one.

\setbox\scratchbox=\hbox to 20pt{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\setbox\scratchbox=\hbox{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\global\wd\scratchbox=15pt

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide

here the box is 0.0pt wide

here the box is 15.0pt wide

126

Allocation

here the box is 15.0pt wide

here the box is 20.0pt wide

\scratchdimen=20pt

here the dimension is \the\scratchdimen\par

\begingroup

\scratchdimen=0pt

here the dimension is \the\scratchdimen\par

\begingroup

\global\scratchdimen=15pt

here the dimension is \the\scratchdimen\par

\endgroup

here the dimension is \the\scratchdimen\par

\endgroup

here the dimension is \the\scratchdimen\par

here the dimension is 20.0pt

here the dimension is 0.0pt

here the dimension is 15.0pt

here the dimension is 15.0pt

here the dimension is 15.0pt

10.3 Allocation

The plain TEX format has set some standards and one of them is that registers are

allocated with \new... commands. So we can say:

\newcount\mycounta

\newdimen\mydimena

These commands take a register from the pool and relate the given name to that entry.

In ConTEXt we have a bunch of predefined scratch registers for general use, like:

scratchcounter : \meaningfull\scratchcounter

scratchcounterone : \meaningfull\scratchcounterone

scratchcountertwo : \meaningfull\scratchcountertwo

scratchdimen : \meaningfull\scratchdimen

scratchdimenone : \meaningfull\scratchdimenone

scratchdimentwo : \meaningfull\scratchdimentwo

The meaning reveals what these are:

127

Allocation

scratchcounter : integer 1026

scratchcounterone : integer 0

scratchcountertwo : integer 0

scratchdimen : dimension 15.0pt

scratchdimenone : dimension 0.0pt

scratchdimentwo : dimension 0.0pt

You can use the numbers directly but that is a bad idea because they can clash! In

the original TEX engine there are only 256 registers and some are used by the engine

and the core of a macro package itself, so that leaves a little amount for users. The

𝜀-TEX extension lifted that limitation and bumped to 32K and LuaTEX upped that to

64K. One could go higher but what makes sense? These registers are taking part of

the fixed memory slots because that makes nested (grouped) usage efficient and access

fast. The number you see above is deduced from the so called command code (here

indicated by \count) and an index encoded in the same token. So, \scratchcounter

takes a single token contrary to the verbose \count257 that takes four tokens where

the number gets parsed every time it is needed. But those are details that a user can

forget.

As mentioned, commands like \newcount\foo create a global control sequence \foo

referencing a counter. You can locally redefine that control sequence unless in LuaMeta­

TEX you have so called overload mode enabled. You can do local or global assignments

to these registers.

\scratchcounter = 123

\begingroup

\scratchcounter = 456

\begingroup

\global\scratchcounter = 789

\endgroup

\endgroup

And in both cases count register 257 is set. When an assignment is global, all current

values to that register get the same value. Normally this is all quite transparent: you

get what you ask for. However the drawback is that as a user you cannot know what

variables are already defined, which means that this will fail (that is: it will issue a

message):

\newcount\scratchcounter

as will the second line in:

\newcount\myscratchcounter

128

Allocation

\newcount\myscratchcounter

In ConTEXt the scratch registers are visible but there are lots of internally used ones

are protected from the user by more obscure names. So what if you want to use your

own register names without ConTEXt barking to you about not being able to define it.

This is why in LMTX (and maybe some day in MkIV) we now have local definitions:

\begingroup

\newlocaldimen\mydimena \mydimena1\onepoint

\newlocaldimen\mydimenb \mydimenb2\onepoint

(\the\mydimena,\the\mydimenb)

\begingroup

\newlocaldimen\mydimena \mydimena3\onepoint

\newlocaldimen\mydimenb \mydimenb4\onepoint

\newlocaldimen\mydimenc \mydimenc5\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc)

\begingroup

\newlocaldimen\mydimena \mydimena6\onepoint

\newlocaldimen\mydimenb \mydimenb7\onepoint

(\the\mydimena,\the\mydimenb)

\endgroup

\newlocaldimen\mydimend \mydimend8\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc,\the\mydimend)

\endgroup

(\the\mydimena,\the\mydimenb)

\endgroup

The allocated registers get zero values but you can of course set them to any value that

fits their nature:

(1.0pt,2.0pt)

(3.0pt,4.0pt,5.0pt)

(6.0pt,7.0pt)

(3.0pt,4.0pt,5.0pt,8.0pt)

(1.0pt,2.0pt)

You can also use the next variant where you also pass the initial value:

\begingroup

\setnewlocaldimen\mydimena 1\onepoint

\setnewlocaldimen\mydimenb 2\onepoint

(\the\mydimena,\the\mydimenb)

129

Files

\begingroup

\setnewlocaldimen\mydimena 3\onepoint

\setnewlocaldimen\mydimenb 4\onepoint

\setnewlocaldimen\mydimenc 5\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc)

\begingroup

\setnewlocaldimen\mydimena 6\onepoint

\setnewlocaldimen\mydimenb 7\onepoint

(\the\mydimena,\the\mydimenb)

\endgroup

\setnewlocaldimen\mydimend 8\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc,\the\mydimend)

\endgroup

(\the\mydimena,\the\mydimenb)

\endgroup

So, again we get:

(1.0pt,2.0pt)

(3.0pt,4.0pt,5.0pt)

(6.0pt,7.0pt)

(3.0pt,4.0pt,5.0pt,8.0pt)

(1.0pt,2.0pt)

When used in the body of the macro there is of course a little overhead involved in the

repetitive allocation but normally that can be neglected.

10.4 Files

When adding these new allocators I also wondered about the read and write allocators.

We don't use them in ConTEXt but maybe users like them, so let's give an example and

see what more demands they have:

\integerdef\StartHere\numexpr\inputlineno+2\relax

\starthiding

SOME LINE 1

SOME LINE 2

SOME LINE 3

SOME LINE 4

\stophiding

\integerdef\StopHere\numexpr\inputlineno-2\relax

130

Files

\begingroup

\newlocalread\myreada

\immediate\openin\myreada {lowlevel-scope.tex}

\dostepwiserecurse{\StopHere}{\StartHere}{-1}{

\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par

}

\blank

\dostepwiserecurse{\StartHere}{\StopHere}{1}{

\read \myreada line #1 to \scratchstring #1 : \scratchstring \par

}

\immediate\closein\myreada

\endgroup

Here, instead of hard coded line numbers we used the stored values. The optional line

keyword is a LMTX speciality.

281 : SOME LINE 4

280 : SOME LINE 3

279 : SOME LINE 2

278 : SOME LINE 1

278 : SOME LINE 1

279 : SOME LINE 2

280 : SOME LINE 3

281 : SOME LINE 4

Actually an application can be found in a small (demonstration) module:

\usemodule[system-readers]

This provides the code for doing this:

\startmarkedlines[test]

SOME LINE 1

SOME LINE 2

SOME LINE 3

\stopmarkedlines

\begingroup

\newlocalread\myreada

\immediate\openin\myreada {\markedfilename{test}}

\dostepwiserecurse{\lastmarkedline{test}}{\firstmarkedline{test}}{-1}{

\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par

131

Colofon

}

\immediate\closein\myreada

\endgroup

As you see in these examples, we an locally define a read channel without getting a

message about it already being defined.

10.4 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

132

11 Paragraphs

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

paragraphs

133

Introduction

Contents

11.1 Introduction 133

11.2 Paragraphs 133

11.3 Properties 137

11.4 Wrapping up 139

11.5 Hanging 140

11.6 Shapes 140

11.7 Modes 158

11.8 Leaders 158

11.9 Prevdepth 165

11.10Normalization 167

11.11Dirty tricks 167

11.1 Introduction

This manual is mostly discussing a few low level wrappers around low level TEX features.

Its writing is triggered by an update to the MetaFun and LuaMetaFun manuals where

we mess a bit with shapes. It gave a good reason to also cover some more paragraph

related topics but it might take a while to complete. Remind me if you feel that takes

too much time.

Because paragraphs and their construction are rather central to TEX, you can imagine

that the engine exposes dealing with them. This happens via commands (primitives) but

only when it's robust. Then there are callbacks, and some provide detailed information

about what we're dealing with. However, intercepting node lists can already be hairy

and we do that a lot in ConTEXt. Intercepting and tweaking paragraph properties is

even more tricky, which is why we try to avoid that in the core. But . . . in the following

sections you will see that there are actually a couple of mechanism that do so. Often

new features like this are built in stepwise and enabled locally for a while and when

they seem okay they get enabled by default.17

11.2 Paragraphs

Before we demonstrate some trickery, let's see what a paragraph is. Normally a docu­

ment source is formatted like this:

17 For this we have \enableexperiments which one can use in cont-loc.mkxl or cont-exp.mkxl, files that

are loaded runtime when on the system. When you use them, make sure they don't interfere; they are not

part of the updates, contrary to cont-new.mkxl.

134

Paragraphs

some text (line 1)

some text (line 2)

some more test (line 1)

some more test (line 2)

There are two blocks of text here separated by an empty line and they become two

paragraphs. Unless configured otherwise an empty line is an indication that we end a

paragraph. You can also explicitly do that:

some text (line 1)

some text (line 2)

\par

some more test (line 1)

some more test (line 2)

When TEX starts a paragraph, it actually also does something think of:

[\the\everypar]some text (line 1) some text (line 2) \par

[\the\everypar]some more test (line 1) some more test (line 2) \par

or more accurate:

[\the\everypar]some text some text \par

[\the\everypar]some more test some more test \par

because the end-of-line character has become a space. As mentioned, an empty line is

actually the end of a paragraph. But in LuaMetaTEX we can cheat a bit. If we have this:

line 1

line 2

We can do this (watch how we need to permit overloading a primitive when we have

enabled \overloadmode):

\pushoverloadmode

\def\linepar{\removeunwantedspaces !\ignorespaces}

\popoverloadmode

line 1

line 2

This comes out as:

135

Paragraphs

line 1

line 2

I admit that since it got added (as part of some cleanup halfway the overhaul of the

engine) I never saw a reason to use it, but it is a cheap feature. The \linepar primitive

is undefined (\undefined) by default so no user sees it anyway. Just don't use it unless

maybe for some pseudo database trickery (I considered using it for the database module

but it is not needed). In a similar fashion, just don't redefine \par: it's asking for

troubles and ‘not done’ in ConTEXt anyway.

Back to reality. In LuaTEX we get a node list that starts with a so called localpar node

and ends with a \parfillskip. The first node is prepended automatically. That list

travels through the system: hyphenation, applying font properties, break the effectively

one line into lines, wrap them and add them to a vertical list, etc. Each stage can be

intercepted via callbacks.

When the paragraph is broken into lines hanging indentation or a so called par shape

can be applied, and we will see more of that later, here we talk \par and show another

LuaMetaTEX trick:

\def\foo{{\bf test:} \ignorepars}

\foo

line

The macro typesets some text and then skips to the next paragraph:

test: line

Think of this primitive as being a more powerful variant of \ignorespaces. This leaves

one aspect: how do we start a paragraph. Technically we need to force TEX into so called

horizontal mode. When you look at plain TEX documents you will notice commands like

\noindent and \indent. In ConTEXt we have more high level variants, for instance we

have \noindentation.

A robust way to make sure that you get in horizontal mode is using \dontleavehmode

which is a wink to \leavevmode, a command that you should never use in ConTEXt, so

when you come from plain or LATEX, it's one of the commands you should wipe from your

memory.

When TEX starts with a paragraph the \everypar token list is expanded and again this

is a primitive you should not mess with yourself unless in very controlled situations.

136

Paragraphs

If you change its content, you're on your own with respect to interferences and side

effects.

One of the things that TEX does in injecting the indentation. Even when there is none, it

gets added, not as skip but as an empty horizontal box of a certain width. This is easier

on the engine when it constructs the paragraph from the one liner: starting with a skip

demands a bit more testing in the process (a nice trick so to say). However, in ConTEXt

we enable the LuaMetaTEX feature that does use a skip instead of a box. It's part of

the normalization that is discussed later. Instead of checking for a box with property

indent, we check for a skip with such property. This is often easier and cleaner.

A bit off topic is the fact that in traditional TEX empty lines or \par primitives can trigger

an error. This has to do with the fact that the program evolved in a time where paper

terminals were used and runtime could be excessive. So, in order to catch a possible

missing brace, a concept of \longmacros, permitting \par or equivalents in arguments,

was introduced as well as not permitting them in for instance display math. In ConTEXt

MkII most macros that could be sensitive for this were defined as \long so that users

never had to bother about it and probably were not even aware of it. Right from the

start in LuaTEX these error-triggers could be disabled which of course we enable in

ConTEXt and in LuaMetaTEX these features have been removed altogether. I don't think

users will complain about this.

If you want to enforce a newline but not a new paragraph you can use the \crlf com­

mand. When used on its own it will produce an empty line. Don't use this to create

whitespace between lines.

If you want to do something after so called par tokens are seen you can do this:

\def\foo{{\bf >>>> }}

\expandafterpars\foo

this is a new paragraph ...

\expandafterpars\foo

\par\par\par\par

this is a new paragraph ...

This not to be confused with \everyparwhich is a token list that TEX itself injects before

each paragraph (also nested ones).

>>>> this is a new paragraph ...

>>>> this is a new paragraph ...

137

Properties

This is typically a primitive that will only be used in macros. You can actually program

it using macros: pickup a token, check and push it back when it's not a par equivalent

token. The primitive is is just nicer (and easier on the log when tracing is enabled).

11.3 Properties

A paragraph is just a collection of lines that result from one input line that got broken.

This process of breaking into lines is influenced by quite some parameters. In traditional

TEX and also in LuaMetaTEX by default the values that are in effect when the end of the

paragraph is met are used. So, when you change them in a group and then ends the

paragraph after the group, the values you've set in the group are not used.

However, in LuaMetaTEX we can optionally store them with the paragraph. When that

happens the values current at the start are frozen. You can still overload them but that

has to be done explicitly then. The advantage is that grouping no longer interferes with

the line break algorithm. The magic primitive is \snapshotpar which takes a number

made from categories mentioned below:

variable category code

\hsize hsize 0x01

\leftskip skip 0x02

\rightskip skip 0x02

\hangindent hang 0x04

\hangafter hang 0x04

\parindent indent 0x08

\parfillleftskip par fill 0x10

\parfillrightskip par fill 0x10

\adjustspacing adjust 0x20

\adjustspacingstep adjust 0x20

\adjustspacingshrink adjust 0x20

\adjustspacingstretch adjust 0x20

\protrudechars protrude 0x40

\pretolerance tolerance 0x80

\tolerance tolerance 0x80

\emergencystretch stretch 0x100

\looseness looseness 0x200

\lastlinefit last line 0x400

\linepenalty line penalty 0x800

\interlinepenalty line penalty 0x800

\interlinepenalties line penalty 0x800

\clubpenalty club penalty 0x1000

138

Properties

\clubpenalties club penalty 0x1000

\widowpenalty widow penalty 0x2000

\widowpenalties widow penalty 0x2000

\displaywidowpenalty display penalty 0x4000

\displaywidowpenalties display penalty 0x4000

\brokenpenalty broken penalty 0x8000

\adjdemerits demerits 0x10000

\doublehyphendemerits demerits 0x10000

\finalhyphendemerits demerits 0x10000

\parshape shape 0x20000

\baselineskip line 0x40000

\lineskip line 0x40000

\lineskiplimit line 0x40000

\hyphenationmode hyphenation 0x80000

As you can see here, there are more paragraph related parameters than in for instance

pdfTEX and LuaTEX and these are (to be) explained in the LuaMetaTEX manual. You

can imagine that keeping this around with the paragraph adds some extra overhead

to the machinery but most users won't notice that because is is compensated by gains

elsewhere.

This is pretty low level and there are a bunch of helpers that support this but these are

not really user level macros. As with everything TEX you can mess around as much as

you like, and the code gives plenty of examples but when you do this, you're on your

own because it can interfere with ConTEXt core functionality.

In LMTX taking these snapshots is turned on by default and because it thereby fun­

damentally influences the par builder, users can run into compatibility issues but in

practice there has been no complaints (and this feature has been in use quite a while

before this document was written). One reason for users not noticing is that one of the

big benefits is probably handled by tricks mentioned on the mailing list. Imagine that

you have this:

{\bf watch out:} here is some text

In this small example the result will be as expected. But what if something magic with

the start of a paragraph is done? Like this:

\placefigure[left]{A cow!}{\externalfigure[cow.pdf]}

{\bf watch out:} here is some text ... of course much more is needed to

get a flow around the figure!

139

Wrapping up

The figure will hang at the left side of the paragraph but it is put there when the text

starts and that happens inside the bold group. It means that the properties we set in

order to get the shape around the figure are lost as soon as we're at ‘here is some

text’ and definitely is wrong when the paragraph ends and the par builder has to use

them to get the shape right. We get text overlapping the figure. A trick to overcome

this is:

\dontleavehmode {\bf watch out:} here is some text ... of course much

more is needed to get a flow around the figure!

where the first macro makes sure we already start a paragraph before the group is

entered (using a \strut also works). It's not nice and I bet users have been bitten by

this and by now know the tricks. But, with snapshots such fuzzy hacks are not needed

any more! The same is true with this:

{\leftskip 1em some text \par}

where we had to explicitly end the paragraph inside the group in order to retain the

skip. I suppose that users normally use the high level environments so they never had

to worry about this. It's also why users probably won't notice that this new mechanism

has been active for a while. Actually, when you now change a parameter inside the para­

graph its new value will not be applied (unless you prefix it with \frozen or snapshot

it) but no one did that anyway.

11.4 Wrapping up

In ConTEXt LMTX we have a mechanism to exercise macros (or content) before a para­

graph ends. This is implemented using the \wrapuppar primitive. The to be wrapped

up material is bound to the current paragraph which in order to get this done has to be

started when this primitive is used.

Although the high level interface has been around for a while it still needs a bit more

testing (read: use cases are needed). In the few cases where we already use it applica­

tion can be different because again it relates to snapshots. This because in the past we

had to use tricks that also influenced the user interface of some macros (which made

them less natural as one would expect). So the question is: where do we apply it in old

mechanisms and where not.

todo: accumulation, interference, where applied, limitations

140

Hanging

11.5 Hanging

There are two mechanisms for getting a specific paragraph shape: rectangular hang­

ing and arbitrary shapes. Both mechanisms work top-down. The first mechanism

uses a combination of \hangafter and \hangindent, and the second one depends on

\parshape. In this section we discuss the rectangular one.

\hangafter 4 \hangindent 4cm \samplefile{tufte} \page

\hangafter -4 \hangindent 4cm \samplefile{tufte} \page

\hangafter 4 \hangindent -4cm \samplefile{tufte} \page

\hangafter -4 \hangindent -4cm \samplefile{tufte} \page

As you can see in figure 11.1, the four cases are driven by the sign of the values. If

you want to hang into the margin you need to use different tricks, like messing with the

\leftskip, \rightskip or \parindent parameters (which then of course can interfere

with other mechanisms uses at the same time).

11.6 Shapes

In ConTEXt we don't use \parshape a lot. It is used in for instance side floats but even

there not in all cases. It's more meant for special applications. This means that in

MkII and MkIV we don't have some high level interface. However, when MetaFun got

upgraded to LuaMetaFun, and themanual also needed an update, one of the examples in

that manual that used shapes also got done differently (read: nicer). And that triggered

the arrival of a new low level shape mechanism.

One important property of the \parshape mechanism is that it works per paragraph.

You define a shape in terms of a left margin and width of a line. The shape has a fixed

number of such pairs and when there is more content, the last one is used for the rest

of the lines. When the paragraph is finished, the shape is forgotten.18

The high level interface is a follow up on the example in the MetaFun manual and uses

shapes that carry over to the next paragraph. In addition we can cycle over a shape. In

this interface shapes are defined using keyword. Here are some examples:

\startparagraphshape[test]

left 1mm right 1mm

left 5mm right 5mm

18 Not discussed here is a variant that might end up in LuaMetaTEX that works with the progression, i.e. takes

the height of the content so far into account. This is somewhat tricky because for that to work vertical skips

need to be frozen, which is no real big deal but has to be done careful in the code.

141

Shapes

1

We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­

tinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approx­
imate, cluster, aggregate, outline, summarize, itemize, re­
view, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat
from the chaff and separate the sheep from the goats.

2

We thrive in information--thick worlds because of our mar­
velous and everyday capacity to select, edit, single out, struc­
ture, highlight, group, pair, merge, harmonize, synthesize,
focus, organize, condense, reduce, boil down, choose, cate­

gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim­
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out­
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

\hangafter +4

\hangindent +4cm

\hangafter -4

\hangindent +4cm

3

We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approx­
imate, cluster, aggregate, outline, summarize, itemize, re­
view, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat
from the chaff and separate the sheep from the goats.

4

We thrive in information--thick worlds because of our mar­
velous and everyday capacity to select, edit, single out, struc­
ture, highlight, group, pair, merge, harmonize, synthesize,
focus, organize, condense, reduce, boil down, choose, cate­
gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim­
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out­
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

\hangafter +4

\hangindent -4cm

\hangafter -4

\hangindent -4cm

Figure 11.1 Hanging indentation

142

Shapes

\stopparagraphshape

This shape has only two entries so the first line will have a 1mmmargin while later lines

will get 5mm margins. This translates into a \parshape like:

\parshape 2

1mm \dimexpr\hsize-1mm\relax

5mm \dimexpr\hsize-5mm\relax

Watch the number 2: it tells how many specification lines follow. As you see, we need

to calculate the width.

\startparagraphshape[test]

left 1mm right 1mm

left 5mm right 5mm

repeat

\stopparagraphshape

This variant will alternate between 1mm and 5mm margins. The repeating feature is

translated as follows. Maybe at some point I will introduce a few more options.

\parshape 2 options 1

1mm \dimexpr\hsize-1mm\relax

5mm \dimexpr\hsize-5mm\relax

A shape can have some repetition, and we can save keystrokes by copying the last entry.

The resulting \parshape becomes rather long.

\startparagraphshape[test]

left 1mm right 1mm

left 2mm right 2mm

left 3mm right 3mm

copy 8

left 4mm right 4mm

left 5mm right 5mm

left 5mm hsize 10cm

\stopparagraphshape

Also watch the hsize keyword: we don't calculate the hsize from the left and right

values but explicitly set it.

\startparagraphshape[test]

left 1mm right 1mm

143

Shapes

right 3mm

left 5mm right 5mm

repeat

\stopparagraphshape

When a right keywords comes first the left is assumed to be zero. In the examples

that follow we will use a couple of definitions:

\startparagraphshape[test]

both 1mm both 2mm both 3mm both 4mm both 5mm both 6mm

both 7mm both 6mm both 5mm both 4mm both 3mm both 2mm

\stopparagraphshape

\startparagraphshape[test-repeat]

both 1mm both 2mm both 3mm both 4mm both 5mm both 6mm

both 7mm both 6mm both 5mm both 4mm both 3mm both 2mm

repeat

\stopparagraphshape

The last one could also be defines as:

\startparagraphshape[test-repeat]

\rawparagraphshape{test} repeat

\stopparagraphshape

In the previous code we already introduced the repeat option. This will make the shape

repeat at the engine level when the shape runs out of specified lines. In the application

of a shape definition we can specify a method to be used and that determine if the

next paragraph will start where we left off and discard afterwards (shift) or that we

move the discarded lines up front so that we never run out of lines (cycle). It sounds

complicated but just keep in mind that repeat is part of the \parshape and act within

a paragraph while shift and cycle are applied when a new paragraph is started.

In figure 11.2 you see the following applied:

\startshapedparagraph[list=test]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph

\startshapedparagraph[list=test-repeat]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph

144

Shapes

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.

discard, finite shape, page 1 discard, finite shape, page 2

1

We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.

discard, repeat in shape, page 1 discard, repeat in shape, page 2

Figure 11.2 Discarded shaping

In figure 11.3 we use this instead:

145

Shapes

\startshapedparagraph[list=test,method=shift]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph

Finally, in figure 11.4 we use:

\startshapedparagraph[list=test,method=cycle]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph

These examples are probably too small to see the details but you can run them yourself

or zoom in on the details. In the margin we show the values used. Here is a simple

example of (non) poetry. There are other environments that can be used instead but

this makes a good example anyway.

\startparagraphshape[test]

left 0em right 0em

left 1em right 0em

repeat

\stopparagraphshape

\startshapedparagraph[list=test,method=cycle]

verse line 1.1\crlf verse line 2.1\crlf

verse line 3.1\crlf verse line 4.1\par

verse line 1.2\crlf verse line 2.2\crlf

verse line 3.2\crlf verse line 4.2\crlf

verse line 5.2\crlf verse line 6.2\par

\stopshapedparagraph

verse line 1.1

verse line 2.1

verse line 3.1

verse line 4.1

verse line 1.2

verse line 2.2

verse line 3.2

verse line 4.2

verse line 5.2

verse line 6.2

Because the idea for this feature originates in MetaFun, we will now kick in some Meta­

Post. The following code creates a shape for a circle. We use a 2mm offset here:

146

Shapes

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.

shift, finite shape, page 1 shift, finite shape, page 2

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca­
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo­
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis­
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re­
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate
the sheep from the goats.

shift, repeat in shape, page 1 shift, repeat in shape, page 2

Figure 11.3 Shifted shaping

147

Shapes

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,

2

inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

cycle, finite shape, page 1 cycle, finite shape, page 2

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,

2

inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cat­
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, dis­
criminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and every­
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

cycle, repeat in shape, page 1 cycle, repeat in shape, page 2

Figure 11.4 Cycled shaping

148

Shapes

\startuseMPgraphic{circle}

path p ; p := fullcircle scaled TextWidth ;

build_parshape(p,

2mm, 0, 0,

LineHeight, StrutHeight, StrutDepth, StrutHeight

) ;

\stopuseMPgraphic

We plug this into the already described macros:

\startshapedparagraph[mp=circle]%

\setupalign[verytolerant,stretch,last]%

\samplefile{tufte}

\samplefile{tufte}

\stopshapedparagraph

And get ourself a circular shape. Watch out, at this moment the shape environment does

not add grouping so when as in this case you change the alignment it can influence the

document.

We thrive in information--thick

worlds because of our marvelous and every­

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat­

alog, classify, list, abstract, scan, look into, idealize, isolate, discrimi­

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in­

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre­

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats. We thrive in information--

thick worlds because of our marvelous and everyday capacity to select, edit, single

out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,

condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan,

look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort,

integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus­

ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the

wheat from the chaff and separate the sheep from the goats.

Assuming that the shape definition above is in a buffer we can do this:

\startshapedparagraph[mp=circle]%

149

Shapes

\setupalign[verytolerant,stretch,last]%

\samplefile{tufte}

\samplefile{tufte}

\stopshapedparagraph

The result is shown in figure 11.5. Because all action happens in the framed environ­

ment, we can also use this definition:

\startuseMPgraphic{circle}

path p ; p := fullcircle scaled \the\dimexpr\framedwidth+\framedoffset

*2\relax ;

build_parshape(p,

\framedoffset, 0, 0,

LineHeight, StrutHeight, StrutDepth, StrutHeight

) ;

draw p ;

\stopuseMPgraphic

We thrive in information--thick

worlds because of our marvelous and every­

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat­

alog, classify, list, abstract, scan, look into, idealize, isolate, discrimi­

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in­

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre­

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats. We thrive in information--

thick worlds because of our marvelous and everyday capacity to select, edit, single

out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,

condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan,

look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort,

integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus­

ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the

wheat from the chaff and separate the sheep from the goats.

Figure 11.5 A framed circular shape

A mechanism like this is often never completely automatic in the sense that you need to

keep an eye on the results. Depending on user demands more features can be added.

150

Shapes

With weird shapes you might want to set up the alignment to be tolerant and have

some stretch.

The interface described in theMetaFunmanual is pretty old, the time stamp of the origi­

nal code ismid 2000, but the principles didn't change. The examples in meta-imp-txt.mkxl

can now be written as:

\startshapetext[test 1,test 2,test 3,test 4]

\setupalign[verytolerant,stretch,normal]%

\samplefile{douglas} % Douglas R. Hofstadter

\stopshapetext

\startcombination[2*2]

{\framed[offset=overlay,frame=off,background=test 1]{\getshapetext}}

{test 1}

{\framed[offset=overlay,frame=off,background=test 2]{\getshapetext}}

{test 2}

{\framed[offset=overlay,frame=off,background=test 3]{\getshapetext}}

{test 3}

{\framed[offset=overlay,frame=off,background=test 4]{\getshapetext}}

{test 4}

\stopcombination

In figure 11.6 we see the result. Watch how for two shapes we have enabled tracing. Of

course you need to tweak till all fits well but we're talking of special situations anyway.

Here is a bit more extreme example. Again we use a circle:

\startuseMPgraphic{circle}

lmt_parshape [

path = fullcircle scaled 136mm,

offset = 2mm,

bottomskip = - 1.5LineHeight,

] ;

\stopuseMPgraphic

But we output a longer text:

\startshapedparagraph[mp=circle,repeat=yes,method=cycle]%

\setupalign[verytolerant,stretch,last]\dontcomplain

{\darkred \samplefile{tufte}}\par

{\darkgreen \samplefile{tufte}}\par

{\darkblue \samplefile{tufte}}\par

151

Shapes

Donald Knuth has

spent the past several

years working on a sys­

tem allowing him to control

many aspects of the design of

his forthcoming books—from

the typesetting and lay­

out down to the very

shapes of the

let­

ters! Sel­

dom has an au­

thor had anything

remotely like this power

to control the final appear­

ance of his or her work.

Knuth's TEX type­

setting sys­

tem has

be­

test 1 test 2

come well-known and is

available in many coun­

tries around the world.

By contrast, his Meta­

Font system for design­

ing families of type­

faces has not become

as well known or as

available.

In his article “The Con­

cept of a Meta-Font”,

Knuth sets forth for

the first time the

underlying philos­

ophy of MetaFont,

as well as some of

its products. Not

only is the concept

exciting and clearly

well executed, but in

test 3 test 4

Figure 11.6

{\darkcyan \samplefile{tufte}}\par

{\darkmagenta \samplefile{tufte}}\par

\stopshapedparagraph

We get a multi-page shape:

We thrive in information--thick

worlds because of our marvelous and every­

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat­

152

Shapes

alog, classify, list, abstract, scan, look into, idealize, isolate, discrimi­

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in­

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre­

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca­

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmonize,

synthesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog,

classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen,

pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,

average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip

into, flip through, browse, glance into, leaf through, skim, refine, enumerate, glean,

synopsize, winnow the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and every­

day capacity to select, edit, single out, structure, highlight, group, pair,

merge, harmonize, synthesize, focus, organize, condense, reduce, boil

down, choose, categorize, catalog, classify, list, abstract, scan, look

into, idealize, isolate, discriminate, distinguish, screen, pigeon­

hole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster,

aggregate, outline, summarize, itemize, re­

view, dip into, flip through, browse,

glance into, leaf

through, skim, refine, enumer­

ate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the

goats.

We thrive in information--thick worlds because of our marvelous

and everyday capacity to select, edit, single out, structure, highlight,

group, pair, merge, harmonize, synthesize, focus, organize, condense, re­

duce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look

into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over,

sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approxi­

mate, cluster, aggregate, outline, summarize, itemize, review, dip into, flip through,

browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow

the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday capacity

153

Shapes

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­

size, focus, organize, condense, reduce, boil down, choose, categorize, catalog, classify,

list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pi­

geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,

average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip

into, flip through, browse, glance into, leaf through, skim, refine, enumerate,

glean, synopsize, winnow the wheat from the chaff and separate the sheep

from the goats.

Compare this with:

\startshapedparagraph[mp=circle,repeat=yes,method=cycle]%

\setupalign[verytolerant,stretch,last]\dontcomplain

{\darkred \samplefile{tufte}}

{\darkgreen \samplefile{tufte}}

{\darkblue \samplefile{tufte}}

{\darkcyan \samplefile{tufte}}

{\darkmagenta \samplefile{tufte}}

\stopshapedparagraph

Which gives:

We thrive in information--thick

worlds because of our marvelous and every­

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat­

alog, classify, list, abstract, scan, look into, idealize, isolate, discrim­

inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,

inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag­

gregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the

wheat from the chaff and separate the sheep from the goats. We thrive in in­

formation--thick worlds because of our marvelous and everyday capacity to select,

edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, fo­

cus, organize, condense, reduce, boil down, choose, categorize, catalog, classify, list,

abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeon­

hole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, aver­

age, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into,

flip through, browse, glance into, leaf through, skim, refine, enumerate, glean,

synopsize, winnow the wheat from the chaff and separate the sheep from the

goats. We thrive in information--thick worlds because of our marvelous and

154

Shapes

everyday capacity to select, edit, single out, structure, highlight, group, pair,

merge, harmonize, synthesize, focus, organize, condense, reduce, boil

down, choose, categorize, catalog, classify, list, abstract, scan, look

into, idealize, isolate, discriminate, distinguish, screen, pigeon­

hole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster,

aggregate, outline, summarize, itemize, re­

view, dip into, flip through, browse,

glance into, leaf

through, skim, refine, enumer­

ate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the

goats. We thrive in information--thick worlds because of

our marvelous and everyday capacity to select, edit, single out,

structure, highlight, group, pair, merge, harmonize, synthesize, fo­

cus, organize, condense, reduce, boil down, choose, categorize, catalog,

classify, list, abstract, scan, look into, idealize, isolate, discriminate, distin­

guish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa­

rize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim,

refine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate

the sheep from the goats. We thrive in information--thick worlds because of our mar­

velous and everyday capacity to select, edit, single out, structure, highlight, group, pair,

merge, harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrimi­

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,

lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum­

marize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

Here the bottomskip takes care of subtle rounding issues as well as discarding the last

line in the shape so that we get nicer continuation. There is no full automated solution

for all you can come up with.

Mixing a MetaPost specification into a regular one is also possible. The next example

demonstrates this as well as the option to remove some lines from a specification:

\startparagraphshape[test]

left 0em right 0em

left 1em right 0em

155

Shapes

metapost {circle}

delete 3

metapost {circle,circle,circle}

delete 7

metapost {circle}

repeat

\stopparagraphshape

You can combine a shape with narrowing a paragraph. Watch the absolute keyword in

the next code. The result is shown in figure 11.7.

\startuseMPgraphic{circle}

lmt_parshape [

path = fullcircle scaled TextWidth,

bottomskip = - 1.5LineHeight,

] ;

\stopuseMPgraphic

\startparagraphshape[test-1]

metapost {circle} repeat

\stopparagraphshape

\startparagraphshape[test-2]

absolute left metapost {circle} repeat

\stopparagraphshape

\startparagraphshape[test-3]

absolute right metapost {circle} repeat

\stopparagraphshape

\startparagraphshape[test-4]

absolute both metapost {circle} repeat

\stopparagraphshape

\showframe

\startnarrower[4*left,2*right]

\startshapedparagraph[list=test-1,repeat=yes,method=repeat]%

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-2,repeat=yes,method=repeat]%

156

Shapes

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-3,repeat=yes,method=repeat]%

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-4,repeat=yes,method=repeat]%

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\stopnarrower

The shape mechanism has a few more tricks but these are really meant for usage in

specific situations, where one knows what one deals with. The following examples are

visualized in figure 11.8.

\useMPlibrary[dum]

\usemodule[article-basics]

\startbuffer

\externalfigure[dummy][width=6cm]

\stopbuffer

\startshapedparagraph[text=\getbuffer]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,

hoffset=-2em]

\dorecurse{3}{\samplefile{ward}\par}

157

Shapes

1

Had our
solar system in­

cluded two suns, the problem
would have involved three bodies

(the two suns and each planet), and
chaos would have been immediately obvious.

Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets
would never have been able to percieve the slightest
harmony. Nor would it have occurred to them that the
universe might be ruled by laws and that it is up to man's
intellect to discover them. Besides, it is not at all obvi­
ous that life and conscience could even emerge in such a
chaotic system. Had our solar system included two suns,
the problem would have involved three bodies (the two suns
and each planet), and chaos would have been immediately
obvious. Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets would
never have been able to percieve the slightest harmony.
Nor would it have occurred to them that the uni­
verse might be ruled by laws and that it is up to
man's intellect to discover them. Besides, it is
not at all obvious that life and conscience
could even emerge in such a chaotic
system. Had our solar system

included two suns, the
problem

would have involved
three bodies (the two suns

and each planet), and chaos would
have been immediately obvious. Planets

would have had erratic and unpredictable or­
bits, and creatures living on one of these planets
would never have been able to percieve the slightest
harmony. Nor would it have occurred to them that
the universe might be ruled by laws and that it is up to
man's intellect to discover them. Besides, it is not at all
obvious that life and conscience could even emerge in such

a chaotic system.

2

Had our solar system
included two suns, the problem

would have involved three bodies (the two
suns and each planet), and chaos would have been

immediately obvious. Planets would have had erratic
and unpredictable orbits, and creatures living on one of

these planets would never have been able to percieve the slight­
est harmony. Nor would it have occurred to them that the universe
might be ruled by laws and that it is up to man's intellect to discover
them. Besides, it is not at all obvious that life and conscience could
even emerge in such a chaotic system. Had our solar system included
two suns, the problem would have involved three bodies (the two suns
and each planet), and chaos would have been immediately obvious. Plan­
ets would have had erratic and unpredictable orbits, and creatures living
on one of these planets would never have been able to percieve the slightest
harmony. Nor would it have occurred to them that the universe might be
ruled by laws and that it is up to man's intellect to discover them. Be­
sides, it is not at all obvious that life and conscience could even emerge
in such a chaotic system. Had our solar system included two suns,
the problem would have involved three bodies (the two suns and
each planet), and chaos would have been immediately obvious.
Planets would have had erratic and unpredictable orbits, and
creatures living on one of these planets would never have
been able to percieve the slightest harmony. Nor
would it have occurred to them that the uni­

verse might be ruled by laws and that
it is up to man's intel­

lect to discover them. Besides, it is
not at all obvious that life and conscience
could even emerge in such a chaotic system.

test 1 test 2, left

3

Had our solar
system included two suns,

the problem would have involved
three bodies (the two suns and each

planet), and chaos would have been immediately
obvious. Planets would have had erratic and unpre­

dictable orbits, and creatures living on one of these plan­
ets would never have been able to percieve the slightest har­
mony. Nor would it have occurred to them that the universe
might be ruled by laws and that it is up to man's intellect to dis­
cover them. Besides, it is not at all obvious that life and conscience
could even emerge in such a chaotic system. Had our solar system
included two suns, the problem would have involved three bodies
(the two suns and each planet), and chaos would have been imme­
diately obvious. Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets would never have
been able to percieve the slightest harmony. Nor would it have oc­
curred to them that the universe might be ruled by laws and that
it is up to man's intellect to discover them. Besides, it is not at
all obvious that life and conscience could even emerge in such
a chaotic system. Had our solar system included two suns,
the problem would have involved three bodies (the
two suns and each planet), and chaos would have
been immediately obvious. Planets would
have had erratic and unpredictable or­

bits, and creatures living on one
of these planets

would never have been able
to percieve the slightest harmony.

Nor would it have occurred to them that
the universe might be ruled by laws and that it

is up to man's intellect to discover them. Besides, it
is not at all obvious that life and conscience could even

emerge in such a chaotic system.

4

Had our solar system included
two suns, the problem would have in­

volved three bodies (the two suns and each
planet), and chaos would have been immediately obvi­

ous. Planets would have had erratic and unpredictable orbits,
and creatures living on one of these planets would never have been

able to percieve the slightest harmony. Nor would it have occurred to
them that the universe might be ruled by laws and that it is up to man's
intellect to discover them. Besides, it is not at all obvious that life and
conscience could even emerge in such a chaotic system. Had our solar sys­
tem included two suns, the problem would have involved three bodies (the two
suns and each planet), and chaos would have been immediately obvious. Planets
would have had erratic and unpredictable orbits, and creatures living on one of
these planets would never have been able to percieve the slightest harmony. Nor
would it have occurred to them that the universe might be ruled by laws and that
it is up to man's intellect to discover them. Besides, it is not at all obvious that
life and conscience could even emerge in such a chaotic system. Had our solar
system included two suns, the problem would have involved three bodies (the
two suns and each planet), and chaos would have been immediately obvious.
Planets would have had erratic and unpredictable orbits, and creatures
living on one of these planets would never have been able to percieve
the slightest harmony. Nor would it have occurred to them that
the universe might be ruled by laws and that it is up to man's
intellect to discover them. Besides, it is not at all obvious
that life and conscience could even emerge in such a

chaotic system.

test 3, right test 4, both

Figure 11.7 Skip compensation

158

L__

L__

Modes
L__

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,

voffset=-2ex,hoffset=-2em]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,

voffset=-2ex,hoffset=-2em,lines=1]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[width=4cm,lines=4]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

11.7 Modes

todo: some of the side effects of so called modes

11.8 Leaders

Leaders are a basic feature that users probably never run into directly. They repeat

content till it fits the specified width which can be stretched out. The content is typeset

once and it is the backend that does the real work of repetition.

\strut\leaders \hbox{!}\hfill\strut

\strut\xleaders\hbox{!}\hfill\strut

\strut\cleaders\hbox{!}\hfill\strut

\strut\gleaders\hbox{!}\hfill\strut

Here \leaders starts at the left edge and are repeats the box as long as it fits, \xleaders

spreads till the edges and \cleaders centers the lot. The \gleaders primitive (which is

not in orginal TEX) takes the outer box as reference and further behaves like \cleaders.L__L__

L__

159

Leaders

L__

1

state: unknown

The Earth, as a habitat for animal life, is in old
age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever
evolved or not. But our presence is like the effect
of an old-age patient who smokes many packs of
cigarettes per day—and we humans are the ciga­
rettes.
The Earth, as a habitat for animal life, is in old
age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever

evolved or not. But our presence is like the effect of an old-age patient who
smokes many packs of cigarettes per day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

2

state: unknown

The Earth, as a habitat for animal life, is in old
age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever
evolved or not. But our presence is like the
effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans
are the cigarettes.
The Earth, as a habitat for animal life, is in old
age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever

evolved or not. But our presence is like the effect of an old-age patient who smokes
many packs of cigarettes per day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

3

state: unknown

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per
day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age

patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

4

state: unknown

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per
day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age

patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

5

state: unknown

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per
day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per

day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

6

The Earth, as a habitat for animal life, is in old age and
has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is
like the effect of an old-age patient who smokes many packs
of cigarettes per day—and we humans are the cigarettes.

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

Figure 11.8 Flow around something

!!!L__

!!!L__

!!!L__

!!!L__

The leader primitives take box or rule but in LuaMetaTEX a glyph can also be specified,

which saves wrapping in a box.

\ruledvbox \bgroup \hsize 10cm

\strut\cleaders\hbox{!}\hfill\strut

\egroup

160

Leaders

\ruledvbox \bgroup \hsize 10cm

\strut\cleaders\hrule\hfill\strut

\egroup

\ruledvbox \bgroup \hsize 10cm

\strut\cleaders\glyph`!\hfill\strut

\egroup

!!

!!

The LuaMetaTEX engine also introduced \uleaders

We show three boxes, a regular one first (red):

x xx xxx xxxx

\ruledhbox{L\hss R}\space

x xx xxx xxxx

The second one (blue) is also a box but one that stretches upto 100pt and is in a later

stage, when the paragraph has been built, is repackaged to the effective width. The

third example (green) leaves out the background.

x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx

x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x

xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx

x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x

xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx

x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx

x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx

x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x

xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx

x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x

xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx L R x xx xxx xxxx x xx xxx xxxx

x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx

x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx

LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx

xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx

xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx

xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx

xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx x xx xxx xxxx LR x xx xxx xxxx

In ConTEXt we have wrapped this feature in the adaptive box mechanism, so here a few

a few examples:

\startsetups adaptive:test:a

\setbox\usedadaptivebox\vbox to \usedadaptivetotal \bgroup

\externalfigure

[cow.pdf]

[width=\framedmaxwidth,

frame=on,

height=\usedadaptivetotal]%

\egroup

\stopsetups

161

Leaders

\startsetups adaptive:test:b

\setbox\usedadaptivebox\vbox to \usedadaptivetotal \bgroup

\externalfigure

[cow.pdf]

[width=\usedadaptivewidth,

frame=on,

height=\usedadaptivetotal]%

\egroup

\stopsetups

We use this as follows (see figure 11.9 for the result):

\framed[height=18cm,align=middle,adaptive=yes,top=,bottom=] {%

\begstrut \samplefile{tufte} \endstrut

\par

\adaptivevbox

[strut=yes,setups=adaptive:test:a]

{\showstruts\strut\hsize5cm\hss}%

\par

\adaptivevbox

[strut=yes,setups=adaptive:test:b]

{\showstruts\strut\hsize5cm\hss}%

\par

\begstrut \samplefile{tufte} \endstrut

}

Here is one that you can test yourself:

\startsetups adaptive:test

\setbox\usedadaptivebox\vbox to \usedadaptivetotal \bgroup

\externalfigure

[cow.pdf]

[width=\usedadaptivewidth,

height=\usedadaptivetotal]%

\egroup

\stopsetups

\ruledvbox to \textheight {

\par \begstrut \samplefile{tufte} \endstrut \par

\adaptivevbox[strut=yes,setups=adaptive:test]{\hsize\textwidth\hss}

\par \begstrut \samplefile{tufte} \endstrut

}

162

Leaders

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,

discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,

inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,

aggregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow

the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge,

harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,

discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,

inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster,

aggregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow

the wheat from the chaff and separate the sheep from the goats.

Figure 11.9

The next example comes from the test suite (where it runs over many pages in order to

illustrate the idea):

\startMPdefinitions

def TickTock =

interim linecap := squared;

163

Leaders

save p ; path p ;

p := fullsquare xysized(AdaptiveWidth,.9(AdaptiveHeight+AdaptiveDepth))

;

fill p withcolor AdaptiveColor ;

draw bottomboundary (p enlarged (-AdaptiveThickness))

withdashes (3*AdaptiveThickness)

withpen pencircle scaled AdaptiveThickness

withcolor white ;

enddef ;

\stopMPdefinitions

\startsetups adaptive:test

\setbox\usedadaptivebox\hbox

to \usedadaptivewidth

yoffset -.9\usedadaptivedepth

\bgroup

\hss

\startMPcode

TickTock ;

\stopMPcode

\hss

\egroup

\stopsetups

\definecolor[adaptive:tick][.25(blue,green)]

\definecolor[adaptive:tock][.75(blue,green)]

\defineadaptive

[tick]

[setups=adaptive:test,

color=adaptive:tick,

foregroundcolor=white,

foregroundstyle=\infofont,

strut=yes]

\defineadaptive

[tock]

[tick]

[color=adaptive:tock]

\dostepwiserecurse{8}{12}{1}{%

164

Leaders

\dostepwiserecurse{5}{15}{1}{%

this~#1.##1 is~#1.##1 test~#1.##1

\ifodd##1\relax

\adaptivebox[tick]{\hss tick #1.##1\hss}

\else

\adaptivebox[tock]{\hss tock #1.##1\hss}

\fi

}

}

this 8.5 is 8.5 test 8.5 tick 8.5 this 8.6 is 8.6 test 8.6 tock 8.6 this 8.7 is 8.7 test 8.7

this 8.8 is 8.8 test 8.8 tock 8.8 this 8.9 is 8.9 test 8.9 tick 8.9 this 8.10 is 8.10 test 8.10

this 8.11 is 8.11 test 8.11 tick 8.11 this 8.12 is 8.12 test 8.12 tock 8.12 this 8.13 is 8.13

test 8.13 tick 8.13 this 8.14 is 8.14 test 8.14 tock 8.14 this 8.15 is 8.15 test 8.15

this 9.5 is 9.5 test 9.5 tick 9.5 this 9.6 is 9.6 test 9.6 tock 9.6 this 9.7 is 9.7 test 9.7

this 9.8 is 9.8 test 9.8 tock 9.8 this 9.9 is 9.9 test 9.9 tick 9.9 this 9.10 is 9.10 test 9.10

this 9.11 is 9.11 test 9.11 tick 9.11 this 9.12 is 9.12 test 9.12 tock 9.12 this 9.13 is 9.13

test 9.13 tick 9.13 this 9.14 is 9.14 test 9.14 tock 9.14 this 9.15 is 9.15 test 9.15

this 10.5 is 10.5 test 10.5 tick 10.5 this 10.6 is 10.6 test 10.6 tock 10.6 this 10.7 is 10.7

test 10.7 tick 10.7 this 10.8 is 10.8 test 10.8 tock 10.8 this 10.9 is 10.9 test 10.9

this 10.10 is 10.10 test 10.10 tock 10.10 this 10.11 is 10.11 test 10.11 tick 10.11 this 10.12

is 10.12 test 10.12 tock 10.12 this 10.13 is 10.13 test 10.13 tick 10.13 this 10.14 is 10.14

test 10.14 tock 10.14 this 10.15 is 10.15 test 10.15 tick 10.15 this 11.5 is 11.5 test 11.5

this 11.6 is 11.6 test 11.6 tock 11.6 this 11.7 is 11.7 test 11.7 tick 11.7 this 11.8 is 11.8

test 11.8 tock 11.8 this 11.9 is 11.9 test 11.9 tick 11.9 this 11.10 is 11.10 test 11.10

this 11.11 is 11.11 test 11.11 tick 11.11 this 11.12 is 11.12 test 11.12 tock 11.12 this 11.13

is 11.13 test 11.13 tick 11.13 this 11.14 is 11.14 test 11.14 tock 11.14 this 11.15 is 11.15

test 11.15 tick 11.15 this 12.5 is 12.5 test 12.5 tick 12.5 this 12.6 is 12.6 test 12.6

this 12.7 is 12.7 test 12.7 tick 12.7 this 12.8 is 12.8 test 12.8 tock 12.8 this 12.9 is 12.9

test 12.9 tick 12.9 this 12.10 is 12.10 test 12.10 tock 12.10 this 12.11 is 12.11 test 12.11

this 12.12 is 12.12 test 12.12 tock 12.12 this 12.13 is 12.13 test 12.13 tick 12.13 this 12.14

is 12.14 test 12.14 tock 12.14 this 12.15 is 12.15 test 12.15 tick 12.15

In the next example the graphics adapt to the available space:

\startsetups adaptive:test

\setbox\usedadaptivebox\hbox

to \usedadaptivewidth

yoffset -\usedadaptivedepth

\bgroup

\externalfigure

165

Prevdepth

[cow.pdf]

[width=\usedadaptivewidth,

height=\dimexpr\usedadaptivetotal\relax]%

\egroup

\stopsetups

\dostepwiserecurse{1}{50}{1}{%

this~#1 is~#1 test~#1

{\adaptivebox[strut=yes,setups=adaptive:test]{}}

}

this 1 is 1 test 1 this 2 is 2 test 2 this 3 is 3 test 3 this 4 is 4 test 4 this 5

is 5 test 5 this 6 is 6 test 6 this 7 is 7 test 7 this 8 is 8 test 8 this 9 is 9

test 9 this 10 is 10 test 10 this 11 is 11 test 11 this 12 is 12 test 12 this 13

is 13 test 13 this 14 is 14 test 14 this 15 is 15 test 15 this 16 is 16 test 16

this 17 is 17 test 17 this 18 is 18 test 18 this 19 is 19 test 19 this 20 is 20

test 20 this 21 is 21 test 21 this 22 is 22 test 22 this 23 is 23 test 23

this 24 is 24 test 24 this 25 is 25 test 25 this 26 is 26 test 26 this 27 is 27

test 27 this 28 is 28 test 28 this 29 is 29 test 29 this 30 is 30 test 30

this 31 is 31 test 31 this 32 is 32 test 32 this 33 is 33 test 33 this 34 is 34

test 34 this 35 is 35 test 35 this 36 is 36 test 36 this 37 is 37 test 37

this 38 is 38 test 38 this 39 is 39 test 39 this 40 is 40 test 40 this 41 is 41

test 41 this 42 is 42 test 42 this 43 is 43 test 43 this 44 is 44 test 44

this 45 is 45 test 45 this 46 is 46 test 46 this 47 is 47 test 47 this 48 is 48

test 48 this 49 is 49 test 49 this 50 is 50 test 50

11.9 Prevdepth

The depth of a box is normally positive but rules can have a negative depth in order to

get a rule above the baseline. When TEX was written the assumption was that a negative

depth of more than 1000 point made no sense at all. The last depth on a vertical list

is registered in the \prevdepth variable. This is basically a reference into the current

list. In order to illustrate some interesting side effects of setting this \prevdepth and

especially when we set it to -1000pt. In order to illustrate this this special value can

be set to a different value in LuaMetaTEX. However, as dealing with the property is

somewhat special in the engine you should not set it unless you know that the macro

package is ware of it.

line 1\par line 2 \par \nointerlineskip line 3 \par

Assuming that we haven't set any inter paragraph spacing this gives:

166

Prevdepth

line 1L__

line 2L__

line 3L__

Here \nointerlineskip is (normally) defined as:

\prevdepth-1000pt

although in ConTEXt we use \ignoredepthcriterium instead of the hard coded dimen­

sion. We now give a more extensive example:

In this example we set \ignoredepthcriterium to−50.0pt instead of the normal−1000pt.
The helper is defined as:

or

The result of the following example is shown in figures 11.10 and 11.11. The first case is

what we normally have in text and we haven't set prevdepth explicitly between lines so

TEX will just look at the depth of the lines. In the second case the depth is ignored when

less than the criterium which is why, when we set the depth of the box to a negative

value we get somewhat interesting skips.

FIRSTL__

−10.0ptL__

LASTL__

FIRSTL__

−20.0ptL__

LASTL__

FIRSTL__

−49.9ptL__

LASTL__

FIRSTL__

−50.0ptL__

LASTL__

FIRSTL__

−50.1ptL__

LASTL__

FIRSTL__

−60.0ptL__

LASTL__

FIRSTL__

−80.0ptL__

LASTL__

Figure 11.10

FIRST

−10.0pt
LAST

FIRST

−20.0pt
LAST

FIRST

−49.9pt
LAST

FIRST

−50.0pt

LAST

FIRST

−50.1pt

LAST

FIRST

−60.0pt

LAST

FIRST

−80.0pt

LAST

Figure 11.11

I'm sure one can use this effect otherwise than intended but I doubt is any user is willing

to do this but the fact that we can lower the criterium makes for nice experiments. Just

for the record, in figure 11.12 you see what we get with positive values:

167

Normalization

FIRST
10.0pt
LAST

FIRST
20.0pt

LAST

FIRST
49.9pt

LAST

FIRST
50.0pt

LAST

FIRST
50.1pt

LAST

FIRST
60.0pt

LAST

FIRST
80.0pt

LAST

Figure 11.12

Watch the interline skip kicking in whenwemake the depth larger than in \ignoredepthcriterium

being 50pt.

11.10 Normalization

todo: users don't need to bother about this but it might be interesting anyway

11.11 Dirty tricks

todo: explain example for combining paragraphs

11.11 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

168

12 Alignments

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

alignments

169

Introduction

Contents

12.1 Introduction 169

12.2 Between the lines 171

12.3 Pre-, inter- and post-tab skips 173

12.4 Cell widths 176

12.5 Plugins 177

12.6 Pitfalls and tricks 180

12.7 Rows 183

12.8 Remark 186

12.1 Introduction

TEX has a couple of subsystems and alignments is one of them. This mechanism is used

to construct tables or alike. Because alignments use low level primitives to set up and

construct a table, and because such a setup can be rather extensive, in most cases users

will rely on macros that hide this.

\halign {

\alignmark\hss \aligntab

\hss\alignmark\hss \aligntab

\hss\alignmark \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

That one doesn't look too complex and comes out as:

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

This is how the previous code comes out when we use one of the ConTEXt table mecha­

nism.

\starttabulate[|l|c|r|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC \NR

\stoptabulate

170

Introduction

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

That one looks a bit different with respect to spaces, so let's go back to the low level

variant:

\halign {

\alignmark\hss \aligntab

\hss\alignmark\hss \aligntab

\hss\alignmark \cr

1.1\aligntab 2,2\aligntab 3=3\cr

11.11\aligntab 22,22\aligntab 33=33\cr

111.111\aligntab 222,222\aligntab 333=333\cr

}

Here we don't have spaces in the content part and therefore also no spaces in the result:

1.1 2,2 3=3

11.11 22,22 33=33

111.111222,222333=333

You can automate dealing with unwanted spacing:

\halign {

\ignorespaces\alignmark\unskip\hss \aligntab

\hss\ignorespaces\alignmark\unskip\hss \aligntab

\hss\ignorespaces\alignmark\unskip \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

We get:

1.1 2,2 3=3

11.11 22,22 33=33

111.111222,222333=333

By moving the space skipping and cleanup to the so called preamble we don't need to

deal with it in the content part. We can also deal with inter-column spacing there:

\halign {

171

Between the lines

\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

If for the moment we forget about spanning columns (\span) and locally ignoring pre­

amble entries (\omit) these basic commands are not that complex to deal with. Here

we use \alignmark but that is just a primitive that we use instead of # while \aligntab

is the same as &, but using the characters instead also assumes that they have the cat­

code that relates to a parameter and alignment tab (and in ConTEXt that is not the case).

The TEXbook has plenty alignment examples so if you really want to learn about them,

consult that must-have-book.

12.2 Between the lines

The individual rows of a horizontal alignment are treated as lines. This means that, as

we see in the previous section, the interline spacing is okay. However, that also means

that when we mix the lines with rules, the normal TEX habits kick in. Take this:

\halign {

\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr

\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr

\noalign{\hrule}

11.11 \aligntab 22,22 \aligntab 33=33 \cr

\noalign{\hrule}

111.111 \aligntab 222,222 \aligntab 333=333 \cr

\noalign{\hrule}

}

The result doesn't look pretty and actually, when you see documents produced by TEX

using alignments you should not be surprised to notice rather ugly spacing. The user

(or the macropackage) should deal with that explicitly, and this is not always the case.

172

Between the lines

1.1 2,2 3=3
11.11 22,22 33=33
111.111 222,222 333=333

The solution is often easy:

\halign {

\ignorespaces\strut\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\strut\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\strut\alignmark\unskip \tabskip 0pt \cr

\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr

\noalign{\hrule}

11.11 \aligntab 22,22 \aligntab 33=33 \cr

\noalign{\hrule}

111.111 \aligntab 222,222 \aligntab 333=333 \cr

\noalign{\hrule}

}

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

The user will not notice it but alignments put some pressure on the general TEX scan­

ner. Actually, the scanner is either scanning an alignment or it expects regular text

(including math). When you look at the previous example you see \noalign. When the

preamble is read, TEX will pick up rows till it finds the final brace. Each row is added

to a temporary list and the \noalign will enter a mode where other stuff gets added to

that list. It all involves subtle look ahead but with minimal overhead. When the whole

alignment is collected a final pass over that list will package the cells and rows (lines)

in the appropriate way using information collected (like the maximum width of a cell

and width of the current cell. It will also deal with spanning cells then.

So let's summarize what happens:

1. scan the preamble that defines the cells (where the last one is repeatedwhen needed)

2. check for \cr, \noalign or a right brace; when a row is entered scan for cells in

parallel the preamble so that cell specifications can be applied (then start again)

3. package the preamble based on information with regards to the cells in a column

4. apply the preamble packaging information to the columns and also deal with pending

cell spans

5. flush the result to the current list, unless packages in a box a \halign is seen as

paragraph and rows as lines (such a table can split)

173

Pre-, inter- and post-tab skips

The second (repeated) step is complicated by the fact that the scanner has to look

ahead for a \noalign, \cr, \omit or \span and when doing that it has to expand what

comes. This can give side effects and often results in obscure error messages. When

for instance an \if is seen and expanded, the wrong branch can be entered. And when

you use protected macros embedded alignment commands are not seen at all; of course

they still need to produce valid operations in the current context.

All these side effects are to be handled in a macro package when it wraps alignments

in a high level interface and ConTEXt does that for you. But because the code doesn't

always look pretty then, in LuaMetaTEX the alignment mechanism has been extended a

bit over time.

Nesting \noalign is normally not permitted (but one can redefine this primitive such

that a macro package nevertheless handles it). The first extension permits nested usage

of \noalign. This has resulted of a little reorganization of the code. A next extension

showed up when overload protection was introduced and extra prefixes were added.

We can signal the scanner that a macro is actually a \noalign variant:19

\noaligned\protected\def\InBetween{\noalign{...}}

Here the \InBetween macro will get the same treatment as \noalign and it will not

trigger an error. This extension resulted in a second bit of reorganization (think of

internal command codes and such) but still the original processing of alignments was

there.

A third overhaul of the code actually did lead to some adaptations in the way alignments

are constructed so let's move on to that.

12.3 Pre-, inter- and post-tab skips

The basic structure of a preamble and row is actually not that complex: it is a mix of

tab skip glue and cells (that are just boxes):

\tabskip 10pt

\halign {

\strut\alignmark\tabskip 12pt\aligntab

\strut\alignmark\tabskip 14pt\aligntab

\strut\alignmark\tabskip 16pt\cr

\noalign{\hrule}

19 One can argue for using the name \peekaligned because in the meantime other alignment primitives also

can use this property.

174

Pre-, inter- and post-tab skips

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

The tab skips are set in advance and apply to the next cell (or after the last one).

TB:10.000cellSP:3.4971.1TB:12.000cellSP:3.4971.2TB:14.000cellSP:3.4971.3TB:16.000

TB:10.000cellSP:3.4972.1TB:12.000cellSP:3.4972.2TB:14.000cellSP:3.4972.3TB:16.000

In the ConTEXt table mechanisms the value of \tabskip is zero in most cases. As in:

\tabskip 0pt

\halign {

\strut\alignmark\aligntab

\strut\alignmark\aligntab

\strut\alignmark\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

When these ships are zero, they still show up in the end:

TB:0.000cellSP:3.4971.1TB:0.000cellSP:3.4971.2TB:0.000cellSP:3.4971.3TB:0.000

TB:0.000cellSP:3.4972.1TB:0.000cellSP:3.4972.2TB:0.000cellSP:3.4972.3TB:0.000

Normally, in order to achieve certain effects there will be more align entries in the

preamble than cells in the table, for instance because you want vertical lines between

175

Pre-, inter- and post-tab skips

cells. When these are not used, you can get quite a bit of empty boxes and zero skips.

Now, of course this is seldom a problem, but when you have a test document where you

want to show font properties in a table and that font supports a script with some ten

thousand glyphs, you can imagine that it accumulates and in LuaTEX (and LuaMetaTEX)

nodes are larger so it is one of these cases where in ConTEXt we get messages on the

console that node memory is bumped.20

After playing a bit with stripping zero tab skips I found that the code would not really

benefit from such a feature: lots of extra tests made it quite ugly. As a result a first

alternative was to just strip zero skips before an alignment got flushed. At least we're

then a bit leaner in the processes that come after it. This feature is now available as

one of the normalizer bits.

But, as we moved on, a more natural approach was to keep the skips in the preamble,

because that is where a guaranteed alternating skip/box is assumed. It also makes that

the original documentation is still valid. However, in the rows construction we can be

lean. This is driven by a keyword to \halign:

\tabskip 0pt

\halign noskips {

\strut\alignmark\aligntab

\strut\alignmark\aligntab

\strut\alignmark\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

No zero tab skips show up here:

20 I suppose it was a coincidence that a few weeks after these features came available a user consulted the

mailing list about a few thousand page table that made the engine run out of memory, something that could

be cured by enabling these new features.

176

Cell widths

cellSP:3.4971.1cellSP:3.4971.2cellSP:3.4971.3

cellSP:3.4972.1cellSP:3.4972.2cellSP:3.4972.3
When playing with all this the LuaMetaTEX engine also got a tracing option for align­

ments. We already had one that showed some of the \noalign side effects, but showing

the preamble was not yet there. This is what \tracingalignments = 2 results in:

<preamble>

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

The ignored subtype is (currently) only used for these alignment tab skips and it trig­

gers a check later on when the rows are constructed. The <content> is what get in­

jected in the cell (represented by \alignmark). The pseudo primitives are internal and

not public.

12.4 Cell widths

Imagine this:

\halign {

177

Plugins

x\hbox to 3cm{\strut \alignmark\hss}\aligntab

x\hbox to 3cm{\strut\hss\alignmark\hss}\aligntab

x\hbox to 3cm{\strut\hss\alignmark }\cr

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

which renders as:

xcell 1.1H__H__ x cell 1.2H__H__ x cell 1.3H__H__H__

xcell 2.1H__H__ x cell 2.2H__H__ x cell 2.3H__H__H____VH__H____VH__

A reason to have boxes here is that it enforces a cell width but that is done at the cost

of an extra wrapper. In LuaMetaTEX the hlist nodes are rather large because we have

more options than in original TEX, for instance offsets and orientation. In a table with

10K rows of 4 cells yet get 40K extra hlist nodes allocated. Now, one can argue that

we have plenty of memory but being lazy is not really a sign of proper programming.

\halign {

x\tabsize 3cm\strut \alignmark\hss\aligntab

x\tabsize 3cm\strut\hss\alignmark\aligntab

x\tabsize 3cm\strut\hss\alignmark\hss\cr

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

If you look carefully you will see that this time we don't have the embedded boxes:

xcell 1.1H__ x cell 1.2H__ x cell 1.3H__H__

xcell 2.1H__ x cell 2.2H__ x cell 2.3H__H____VH__H____VH__

So, both the sparse skip and new \tabsize feature help to make these extreme tables

(spanning hundreds of pages) not consume irrelevant memory and also make that later

on we don't have to consult useless nodes.

12.5 Plugins

Yet another LuaMetaTEX extension is a callback that kicks in between the preamble pre­

roll and finalizing the alignment. Initially as test and demonstration a basic character

178

Plugins

alignment feature was written but that works so well that in some places it can replace

(or compliment) the already existing features in the ConTEXt table mechanisms.

\starttabulate[|lG{.}|cG{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a 0xFF \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC b 0xFFF \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC c 0xFFFF \NC \NR

\stoptabulate

The tabulate mechanism in ConTEXt is rather old and stable and it is the preferred way

to deal with tabular content in the text flow. However, adding the G specifier (as variant

of the g one) could be done without interference or drop in performance. This new G

specifier tells the tabulate mechanism that in that column the given character is used

to vertically align the content that has this character.

1.1 2,2 3=3 a 0xFF

11.11 22,22 33=33 b 0xFFF

111.111 222,222 333=333 c 0xFFFF

Let's make clear that this is not an engine feature but a ConTEXt one. It is however

made easy by this callback mechanism. We can of course use this feature with the low

level alignment primitives, assuming that you tell the machinery that the plugin is to be

kicked in.

\halign noskips \alignmentcharactertrigger \bgroup

\tabskip2em

\setalignmentcharacter.\ignorespaces\alignmark\unskip\hss \aligntab

\hss\setalignmentcharacter,\ignorespaces\alignmark\unskip\hss \aligntab

\hss\setalignmentcharacter=\ignorespaces\alignmark\unskip \aligntab

\hss \ignorespaces\alignmark\unskip\hss \cr

1.1 \aligntab 2,2 \aligntab 3=3 \aligntab \setalignmentcharacter{.}\relax 4.4\cr

11.11 \aligntab 22,22 \aligntab 33=33 \aligntab \setalignmentcharacter{,}\relax 44,44\cr

111.111 \aligntab 222,222 \aligntab 333=333 \aligntab \setalignmentcharacter{!}\relax 444!444\cr

x \aligntab x \aligntab x \aligntab \setalignmentcharacter{/}\relax /\cr

.1 \aligntab ,2 \aligntab =3 \aligntab \setalignmentcharacter{?}\relax ?4\cr

.111 \aligntab ,222 \aligntab =333 \aligntab \setalignmentcharacter{=}\relax 44=444\cr

\egroup

This rather verbose setup renders as:

1.1 2,2 3=3 4 . 4

11.11 22,22 33=33 44 , 44

111.111 222,222 333=333 444 ! 444

x x x /

.1 ,2 =3 ?4

.111 ,222 =333 44=444

179

Plugins

Using a high level interface makes sense but local control over such alignment too, so

here follow some more examples. Here we use different alignment characters:

\starttabulate[|lG{.}|cG{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a 0xFF \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC b 0xFFF \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC c 0xFFFF \NC \NR

\stoptabulate

1.1 2,2 3=3 a 0xFF

11.11 22,22 33=33 b 0xFFF

111.111 222,222 333=333 c 0xFFFF

In this example we specify the characters in the cells. We still need to add a specifier

in the preamble definition because that will trigger the plugin.

\starttabulate[|lG{}|rG{}|]

\NC left \NC right \NC\NR

\NC \showglyphs \setalignmentcharacter{.}1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \showglyphs \setalignmentcharacter{,}11,11 \NC \setalignmentcharacter{,}11,11 \NC\NR

\NC \showglyphs \setalignmentcharacter{=}111=111 \NC \setalignmentcharacter{=}111=111 \NC\NR

\stoptabulate

left right

1 . 1 1 . 1

11 , 11 11 , 11

111=111 111=111

You can mix these approaches:

\starttabulate[|lG{.}|rG{}|]

\NC left \NC right \NC\NR

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC 11.11 \NC \setalignmentcharacter{.}11.11 \NC\NR

\NC 111.111 \NC \setalignmentcharacter{.}111.111 \NC\NR

\stoptabulate

left right

1.1 1.1

11.11 11.11

111.111 111.111

Here the already present alignment feature, that at some point in tabulate might use

this new feature, is meant for numbers, but here we can go wild with words, although

180

Pitfalls and tricks

of course you need to keep in mind that we deal with typeset text, so there may be no

match.

\starttabulate[|lG{.}|rG{.}|]

\NC foo.bar \NC foo.bar \NC \NR

\NC oo.ba \NC oo.ba \NC \NR

\NC o.b \NC o.b \NC \NR

\stoptabulate

foo.bar foo.bar

oo.ba oo.ba

o.b o.b

This feature will only be used in know situations and those seldom involve advanced

typesetting. However, the following does work:21

\starttabulate[|cG{d}|]

\NC \smallcaps abcdefgh \NC \NR

\NC xdy \NC \NR

\NC \sl xdy \NC \NR

\NC \tttf xdy \NC \NR

\NC \tfd d \NC \NR

\stoptabulate

abc d efgh

x d y

x d y

x d y

d
As always with such mechanisms, the question is “Where to stop?” But it makes for nice

demos and as long as little code is needed it doesn't hurt.

12.6 Pitfalls and tricks

The next example mixes bidirectional typesetting. It might look weird at first sight but

the result conforms to what we discussed in previous paragraphs.

\starttabulate[|lG{.}|lG{}|]

\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC\NR

21 Should this be an option instead?

181

Pitfalls and tricks

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC\NR

\NC 1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR

\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC\NR

\NC 1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR

\stoptabulate

1.1 1.1

1.1 1.1

1.11 1.11

1.11 1.11

1.111 1.111

1.111 1.111

In case of doubt, look at this:

\starttabulate[|lG{.}|lG{}|lG{.}|lG{}|]

\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC

1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC

1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR

\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC

1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR

\stoptabulate

1.1 1.1 1.1 1.1

1.11 1.11 1.11 1.11

1.111 1.111 1.111 1.111

The next example shows the effect of \omit and \span. The first one makes that in this

cell the preamble template is ignored.

\halign \bgroup

\tabsize 2cm\relax [\alignmark]\hss \aligntab

\tabsize 2cm\relax \hss[\alignmark]\hss \aligntab

\tabsize 2cm\relax \hss[\alignmark]\cr

1\aligntab 2\aligntab 3\cr

\omit 1\aligntab \omit 2\aligntab \omit 3\cr

1\aligntab 2\span 3\cr

1\span 2\aligntab 3\cr

1\span 2\span 3\cr

1\span \omit 2\span \omit 3\cr

\omit 1\span \omit 2\span \omit 3\cr

\egroup

Spans are applied at the end so you see a mix of templates applied.

182

Pitfalls and tricks

[1]H__ [2]H__ [3]H__H__

1H__ 2H__ 3H__H__

[1]H__ [2] [3]H__ H__H__

[1] [2]H__ H__ [3]H__H__

[1] [2] [3]H__ H__ H__H__

[1] 23H__ H__ H__H__

123H__ H__ H__H____VH__H____VH__

When you define an alignment inside a macro, you need to duplicate the \alignmark

signals. This is similar to embedded macro definitions. But in LuaMetaTEX we can get

around that by using \aligncontent. Keep in mind that when the preamble is scanned

there is no doesn't expand with the exception of the token after \span.

\halign \bgroup

\tabsize 2cm\relax \aligncontent\hss \aligntab

\tabsize 2cm\relax \hss\aligncontent\hss \aligntab

\tabsize 2cm\relax \hss\aligncontent\cr

1\aligntab 2\aligntab 3\cr

A\aligntab B\aligntab C\cr

\egroup

1 2 3

A B C

In this example we still have to be verbose in the way we align but we can do this:

\halign \bgroup

\tabsize 2cm\relax \aligncontentleft \aligntab

\tabsize 2cm\relax \aligncontentmiddle\aligntab

\tabsize 2cm\relax \aligncontentright \cr

183

Rows

1\aligntab 2\aligntab 3\cr

A\aligntab B\aligntab C\cr

\egroup

Where the helpers are defined as:

\noaligned\protected\def\aligncontentleft

{\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentmiddle

{\hss\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentright

{\hss\ignorespaces\aligncontent\unskip}

The preamble scanner see such macros as candidates for a single level expansion so it

will inject the meaning and see the \aligncontent eventually.

1 2 3

A B C

The same effect could be achieved by using the \span prefix:

\def\aligncontentleft{\ignorespaces\aligncontent\unskip\hss}

\halign { ... \span\aligncontentleft ...}

One of the reasons for not directly using the low level \halign command is that it's a

lot of work but by providing a set of helpers like here might change that a bit. Keep in

mind that much of the above is not new in the sense that we could not achieve the same

already, it's just a bit programmer friendly.

12.7 Rows

Alignment support is what the documented source calls ‘interwoven’. When the engine

scans for input it processing text, math or alignment content. While doing alignments

it collects rows, and inside these cells but also deals with material that ends up in

between. In LuaMetaTEX I tried to isolate the bits and pieces as good as possible but

it remains complicated (for all good reasons). Cells as well as rows are finalized after

the whole alignment has been collected and processed. In the end cells and rows are

boxes but till we're done they are in an ‘unset’ state.

Scanning starts with interpreting the preamble, and then grabbing rows. There is some

nasty lookahead involved for \noalign, \span, \omit, \cr and \crcr and that is not code

184

Rows

one wants to tweak too much (although we did in LuaMetaTEX). This means for instance

that adding ‘let's start a row here’ primitive is sort of tricky (but it might happen some

day) which in turn means that it is not really possible to set row properties. As an

experiment we can set some properties now by hijacking \noalign and storing them

on the alignment stack (indeed: at the cost of some extra overhead and memory). This

permits the following:

\halign {

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\quad \aligntab \quad

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\cr

\noalign xoffset 40pt {}

{\darkred cell one} \aligntab {\darkgray cell one} \cr

\noalign orientation "002 {}

{\darkgreen cell one} \aligntab {\darkblue cell one} \cr

\noalign xoffset 40pt {}

{\darkred cell two} \aligntab {\darkgray cell two} \cr

\noalign orientation "002 {}

{\darkgreen cell two} \aligntab {\darkblue cell two} \cr

\noalign xoffset 40pt {}

{\darkred cell three} \aligntab {\darkgray cell three} \cr

\noalign orientation "002 {}

{\darkgreen cell three} \aligntab {\darkblue cell three} \cr

\noalign xoffset 40pt {}

{\darkred cell four} \aligntab {\darkgray cell four} \cr

\noalign orientation "002 {}

{\darkgreen cell four} \aligntab {\darkblue cell four} \cr

}

185

Rows

cell one cell oneL__

cellonecelloneL__

cell two cell twoL__

celltwocelltwoL__

cell three cell threeL__

cellthreecellthreeL__

cell four cell fourL__

cellfourcellfourL__

The supported keywords are similar to those for boxes: source, target, anchor, orientation,

shift, xoffset, yoffset, xmove and ymove. The dimensions can be prefixed by add and

reset wipes all. Here is another example:

\halign {

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\quad \aligntab \quad

\hss

\ignorespaces \alignmark \removeunwantedspaces

\hss

\cr

\noalign xmove 40pt {}

{\darkred cell one} \aligntab {\darkgray cell one} \cr

{\darkgreen cell one} \aligntab {\darkblue cell one} \cr

\noalign xmove 20pt {}

{\darkred cell two} \aligntab {\darkgray cell two} \cr

{\darkgreen cell two} \aligntab {\darkblue cell two} \cr

\noalign xmove 40pt {}

{\darkred cell three} \aligntab {\darkgray cell three} \cr

{\darkgreen cell three} \aligntab {\darkblue cell three} \cr

\noalign xmove 20pt {}

{\darkred cell four} \aligntab {\darkgray cell four} \cr

{\darkgreen cell four} \aligntab {\darkblue cell four} \cr

}

186

Remark

cell one cell oneL__

cell one cell oneL__

cell two cell twoL__

cell two cell twoL__

cell three cell threeL__

cell three cell threeL__

cell four cell fourL__

cell four cell fourL__

Some more features might be added in the future as is it an interesting playground. It

is to be seen how this ends up in ConTEXt high level interfaces like tabulate.

12.8 Remark

It can be that the way alignments are interfaced with respect to attributes is a bit dif­

ferent between LuaTEX and LuaMetaTEX but because the former is frozen (in order not

to interfere with current usage patterns) this is something that we will deal with deep

down in ConTEXt LMTX.

In principle we can have hooks into the rows for pre and post material but it doesn't

really pay of as grouping will still interfere. So for now I decided not to add these.

12.8 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

187

13 Marks

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

marks

188

Introduction

Contents

13.1 Introduction 188

13.2 The basics 189

13.3 Migration 190

13.4 Tracing 192

13.5 High level commands 193

13.6 Pitfalls 195

13.1 Introduction

Marks are one of the subsystems of TEX, as are for instance alignments and math as well

as inserts which they share some properties with. Both inserts and marks put signals

in the list that later on get intercepted and can be used to access stored information. In

the case of inserts this is typeset materials, like footnotes, and in the case of marks it's

token lists. Inserts are taken into account when breaking pages, and marks show up

when a page has been broken and is presented to the output routine. Marks are used

for running headers but other applications are possible.

In MkII marks are used to keep track of colors, transparencies and more properties that

work across page boundaries. It permits picking up at the top of a page from where

one left at the bottom of the preceding one. When MkII was written there was only

one mark so on top of that a multiple mark mechanism was implemented that filtered

specific marks from a collection. Later, 𝜀-TEX provided mark classes so that mechanism

could be simplified. Although it is not that hard to do, this extension to TEX didn't add

any further features, so we can assume that there was no real demand for that.22

But, marks have some nasty limitations, so from the ConTEXt perspective there always

was something to wish for. When you hide marks in boxes they will not be seen (the

same is true for inserts). You cannot really reset them either. Okay, you can set them to

nothing, but even then already present marks are still there. The LuaTEX engine has a

\clearmarks primitive but that works global. In LuaMetaTEX a proper mark flusher is

available. That engine also can work around the deeply nested disappearing marks. In

addition, the current state of a mark can be queried and we have some tracing facilities.

In MkIV the engine's marks were not used at all and an alternative mechanism was

written using Lua. It actually is one of the older MkIV features. It doesn't have the side

22 This is probably true for most LuaTEX and LuaMetaTEX extensions, maybe example usage create retrospec­

tive demand. But one reason for picking up on engine development is that in the ConTEXt perspective we

actually had some demands.

189

The basics

effects that native marks have but it comes at the price of more overhead, although that

is bearable.

In this document we discuss marks but assume that LuaMetaTEX is used with ConTEXt

LMTX. There we experiment with using the native marks, complemented by a few Lua

mechanisms, but it is to be seen if that will be either a replacement or an alternative.

13.2 The basics

Although the original TEX primitives are there, the plural 𝜀-TEX mark commands are to

be used. Marks, signals with token lists, are set with:

\marks0{This is mark 0} % equivalent to: \mark{This is mark 0}

\marks4{This is mark 4}

When a page has been split off, you can (normally this only makes sense in the output

routine) access marks with:

\topmarks 4

\firstmarks4

\botmarks 4

A ‘top’ mark is the last one on the previous page(s), the ‘first’ and ‘bottom’ refer to the

current page. A mark is a so called node, something that ends up in the current list

and the token list is stored with it. The accessors are just commands and they fetch the

token list from a separately managed storage. When you set or access a mark that has

not yet been used, the storage is bumped to the right size, so it doesn't make sense to

use e.g. \marks 999 when there are no 998 ones too: it not only takes memory, it also

makes TEX run over all these mark stores when synchronization happens. The best way

to make sure that you are sparse is:

\newmarks\MyMark

Currently the first 16 marks are skipped so this makes \MyMark become mark 17. The

reason is that we want to make sure that users who experiment with marks have some

scratch marks available and don't overload system defined ones. Future versions of

ConTEXt might become more restrictive.

Marks can be cleared with:

\clearmarks 4

which clears the storage that keeps the top, first and bot marks. This happens immedi­

ately. You can delay this by putting a signal in the list:

190

Migration

\flushmarks 4

This (LuaMetaTEX) feature makes it for instance easy to reset marks that keep track of

section (and lower) titles when a new chapter starts. Of course it still means that one

has to implement some mechanism that deals with this but ConTEXt always had that.

The current, latest assigned, value of a mark is available too:

\currentmarks 4

Using this value in for instance headers and footers makes no sense because the last

node set can be on a following page.

13.3 Migration

In the introduction we mentioned that LuaMetaTEX has migration built in. In MkIV we

have this as option too, but there it is delegated to Lua. It permits deeply nested inserts

(notes) and marks (but we don't use native marks in MkIV).

Migrated marks end up in the postmigrated sublist of a box. In other lowlevel manuals

we discuss these pre- and postmigrated sublists. As example we use this definition:

\setbox0\vbox\bgroup

test \marks 4 {mark 4.1}\par

test \marks 4 {mark 4.1}\par

test \marks 4 {mark 4.1}\par

\egroup

When we turn migration on (officially the second bit):

\automigrationmode"FF \showbox0

we get this:

> \box0=

2:4: \vbox[normal][...], width 483.69687, height 63.43475, depth 0.15576, direction l2r

2:4: .\list

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

191

Migration

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

2:4: .\postmigrated

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

When we don't migrate, enforced with:

\automigrationmode"00 \showbox0

the result is:
> \box0=

2:4: \vbox[normal][...], width 483.69687, height 63.43475, depth 0.15576, direction l2r

2:4: .\list

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

192

Tracing

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4:\glue[left hang][...] 0.0pt

2:4:\glue[left][...] 0.0pt

2:4:\glue[parfillleft][...] 0.0pt

2:4:\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4:\glue[indent][...] 0.0pt

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4:\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4:\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4:\penalty[line][...] 10000

2:4:\glue[parfill][...] 0.0pt plus 1.0fil

2:4:\glue[right][...] 0.0pt

2:4:\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

When you say \showmakeup or in this case \showmakeup[mark] the marks are visualized:

test

test

test

testSM:4

testSM:4

testSM:4

enabled disabled

Here sm means ‘set mark’ while rm would indicate a ‘reset mark’. Of course migrated

marks don't show up because these are bound to the box and thereby have become a a

specific box property as can be seen in the above trace.

13.4 Tracing

The LuaMetaTEX engine has a dedicated tracing option for marks. The fact that the

traditional engine doesn't have this can be seen as indication that this is seldom needed.

\tracingmarks1

\tracingonline2

When tracing is set to 1 we get a list of marks for the just split of page:

2:7: <mark class 51, top := bot>

2:7: ..{sample 9.1}

2:7: <mark class 51: first := mark>

193

High level commands

2:7: ..{sample 10.1}

2:7: <mark class 51: bot := mark>

2:7: ..{sample 10.1}

2:7: <mark class 51, page state>

2:7: ..top {sample 9.1}

2:7: ..first {sample 10.1}

2:7: ..bot {sample 10.1}

When tracing is set to 2 you also get details we get a list of marks of the analysis:

1:9: <mark class 51, top := bot>

1:9: ..{sample 5.1}

1:9: <mark class 51: first := mark>

1:9: ..{sample 6.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 6.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 7.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 8.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 9.1}

1:9: <mark class 51, page state>

1:9: ..top {sample 5.1}

1:9: ..first {sample 6.1}

1:9: ..bot {sample 9.1}

13.5 High level commands

I think that not that many users define their own marks. They are useful for showing

section related titles in headers and footers but the implementation of that is hidden.

The native mark references are top, first and bottom but in the ConTEXt interface we

use different keywords.

ConTEXt TEX column page

previous top last before sync last on previous page

top first first in sync first on page

bottom bot last in sync last on page

first top first not top in sync first on page

last bot last not bottom in sync last on page

194

High level commands

default the same as first

current the last set value

In order to separate marks in ConTEXt from those in TEX, the term ‘marking’ is used.

In MkIV the regular marks mechanism is of course there but, as mentioned, not used.

By using a different namespace we could make the transition from MkII to MkIV (the

same is true for some more mechanisms).

A marking is defined with

\definemarking[MyMark]

A defined marking can be set with two equivalent commands:

\setmarking[MyMark]{content}

\marking [MyMark]{content}

The content is not typeset but stored as token list. In the sectioning mechanism that

uses markings we don't even store titles, we store a reference to a title. In order to use

that (deep down) we hook in a filter command. By default that command does nothing:

\setupmarking[MyMark][filtercommand=\firstofoneargument]

The token list does not get expanded by default, unless you set it up:

\setupmarking[MyMark][expansion=yes]

The current state of a marking can be cleared with:

\clearmarking[MyMark]

but because that en is not synchronized the real deal is:

\resetmarking[MyMark]

Be aware that it introduces a node in the list. You can test if a marking is defined with (as

usual) a test macro. Contrary to (most) other test macros this one is fully expandable:

\doifelsemarking {MyMark} {

defined

} {

undefined

}

195

Pitfalls

Because there can be a chain involved, we can relate markings. Think of sections below

chapters and subsections below sections:

\relatemarking[MyMark][YourMark]

When a marking is set its relatives are also reset, so setting YourMark will reset MyMark.

It is this kind of features that made for marks being wrapped into high level commands

very early in the ConTEXt development (and one can even argue that this is why a pack­

age like ConTEXt exists in the first place).

The rest of the (relatively small) repertoire of commands has to do with fetching mark­

ings. The general command is \getmarking that takes two or three arguments:

\getmarking[MyMarking][first]

\getmarking[MyMarking][page][first]

\getmarking[MyMarking][page][first]

\getmarking[MyMarking][column:1][first]

There are (normally) three marks that can be fetched so we have three commands that

do just that:

\fetchonemark [MyMarking][which one]

\fetchtwomarks[MyMarking]

\fetchallmarks[MyMarking]

You can setup a separator key which by default is:

\setupmarking[MyMarking][separator=\space\emdash\space]

Injection is enabled by default due to this default:

\setupmarking[MyMarking][state=start]

The following three variants are (what is called) fully expandable:

\fetchonemarking [MyMarking][which one]

\fetchtwomarkings[MyMarking]

\fetchallmarkings[MyMarking]

13.6 Pitfalls

The main pitfall is that a (re)setting a mark will inject a node which in vertical mode

can interfere with spacing. In for instance section commands we wrap them with the

title so there it should work out okay.

196

Colofon

13.6 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

197

14 Inserts

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

inserts

198

Introduction

Contents

14.1 Introduction 198

14.2 The page builder 198

14.3 Inserts 200

14.4 Storing 201

14.5 Synchronizing 201

14.6 Migration 201

14.7 Callbacks 202

14.1 Introduction

This document is a mixed bag. We do discuss inserts but also touch elements of the

page builder because inserts and regular page content are handled there. Examples of

mechanisms that use inserts are footnotes. These have an anchor in the running text

and some content that ends up (normally) at the bottom of the page. When considering

a page break the engine tries to make sure that the anchor (reference) and the content

end up on the same page. When there is too much, it will distribute (split) the content

over pages.

We can discuss page breaks in a (pseudo) scientific way and explore how to optimize

this process, taking into accounts also inserts that contain images but it doesn't make

much sense to do that because in practice we can encounter all kind of interferences.

Theory and practice are too different because a document can contain a wild mix of

text, figures, formulas, notes, have backgrounds and location dependent processing. It

get seven more complex when we are dealing with columns because TEX doesn't really

know that concept.

I will therefore stick to some practical aspects and the main reason for this document

is that I sort of document engine features and at the same time give an impression of

what we deal with. I will do that in the perspective of LuaMetaTEX, which has a few

more options and tracing than other engines.

Currently this document is mostly for myself to keep track of the state of inserts and

the page builder in LuaMetaTEX and ConTEXt LMTX. The text is not yet corrected and

can have errors.

14.2 The page builder

When your document is processed content eventually gets added to the so called main

vertical list (mvl). Content first get appended to the list of contributions and at specific

199

The page builder

moments it will be handed over to the mvl. This process is called page building. There

we can encounter the following elements (nodes):

glue a vertical skip

penalty a vertical penalty

kern a vertical kern

vlist a a vertical box

hlist a horizontal box (often a line)

rule a horizontal rule

boundary a boundary node

whatsit a node that is used by user code (often some extension)

mark a token list (as used for running headers)

insert a node list (as used for notes)

The engine itself will not insert anything other than this but Lua code can mess up the

contribution list and the mvl and that can trigger an error. Handing over the contribu­

tions is done by the page builder and that one kicks in in several places:

• When a penalty gets inserted it is part of evaluating if the output routine should be

triggered. This triggering can be enforced by values equal or below 10.000 that then

can be checked in the set routine.

• The builder is not exercised when a glue or kern is injected so there can be multiple

of them before another element triggers the builder.

• Adding a box triggers the builder as does the result of an alignment which can be a

list of boxes.

• When the output routine is finished the builder is executed because the routine can

have pushed back content.

• When a new paragraph is triggered by the \par command the builder kicks in but

only when the engine was able to enter vertical mode.

• When the job is finished the builder will make sure that pending content is handled.

• An insert and vadjust can trigger the builder but only at the nesting level zero which

normally is not the case (I need an example).

• At the beginning of a paragraph (like text), before display math is entered, and when

display math ends the builder is also activated.

At the TEX the builder is triggered automatically in the mentioned cases but at the Lua

end you can use tex.triggerbuildpage() to flush the pending contributions.

The properties that relate to the page look like counter and dimension registers but

they are not. These variables are global and managed differently.

\pagegoal the available space

\pagetotal the accumulated space

200

Inserts

\pagestretch the possible zero order stretch

\pagefilstretch the possible one order stretch

\pagefillstretch the possible second order stretch

\pagefilllstretch the possible third order stretch

\pageshrink the possible shrink

\pagedepth the current page depth

\pagevsize the initial page goal

When the first content is added to an empty page the \pagegoal gets the value of \vsize

and gets frozen but the value is diminished by the space needed by left over inserts.

These inserts are managed via a separate list so they don't interfere with the page

that itself of course can have additional inserts. The \pagevsize is just a (LuaMeta­

TEX) status variable that hold the initial \pagegoal but it might play a role in future

extensions.

Another variable is \deadcycles that registers the number of times the output routine

is called without returning result.

14.3 Inserts

We now come to inserts. In traditional TEX an insert is a data structure that runs on

top of registers: a box, count, dimension and skip. An insert is accessed by a number

so for instance insert 123 will use the four registers of that number. Because TEX only

offers a command alias mechanism for registers (like \countdef) a macro package will

implement some allocator management subsystem (like \newcount). A \newinsert has

to be defined in a way that the four registers are not clashing with other allocators.

When you start with TEX seeing code that deals with in (in plain TEX) can be puzzling

but it follows from the way TEX is set up. But inserts are probably not what you start

exploring right away away.

In LuaMetaTEX you can set \insertmode to 1 and that is what we do in ConTEXt. In

that mode inserts are taken from a pool instead of registers. A side effect is that like

the page properties the insert properties are global too but that is normally no problem

and can be managed well by a macro package (that probably would assign register the

values globally too). The insert pool will grow dynamically on demand so one can just

start at 1; in ConTEXt MkIV we use the range 127 upto 255 in order to avoid a clash

with registers. In LMTX we start at 1 because there are no clashes.

A consequence of this approach is that we use dedicated commands to set the insert

properties:

201

Storing

\insertdistance glue the space before the first instance (on a page)

\insertmultiplier count a factor that is used to calculate the height used

\insertlimit dimen the maximum amount of space on a page to be taken

\insertpenalty count the floating penalty (used when set)

\insertmaxdepth dimen the maximum split depth (used when set)

\insertstorage count signals that the insert has to be stored for later

\insertheight dimen the accumulated height of the inserts so far

\insertdepth dimen the current depth of the inserts so far

\insertwidth dimen the width of the inserts

These commands take a number and an integer, dimension or glue specification. They

can be set and queried but setting the dimensions can have side effects. The accumu­

lated height of the inserts is available in \insertheights (which can be set too). The

\floatingpenalty variable determines the penalty applied when a split is needed.

In the output routine the original TEX variable \insertpenalties is a counter that keeps

the number of insertions that didn't fit on the page while otherwise if has the accumu­

lated penalties of the split insertions. When \holdinginserts is non zero the inserts

in the list are not collected for output, which permits the list to be fed back for repro­

cessing.

The LuaMetaTEX specific storage mode \insertstoring variable is explained in the

next section.

14.4 Storing

This feature is kind of special and still experimental. When \insertstoring is set 1,

all inserts that have their storage flag set will be saved. Think of a multi column setup

where inserts have to end up in the last column. If there are three columns, the first

two will store inserts. Then when the last column is dealt with \insertstoring can be

set to 2 and that will signal the builder that we will inject the inserts. In both cases, the

value of this register will be set to zero so that it doesn't influence further processing.

14.5 Synchronizing

The page builder can triggered by (for instance) a penalty but you can also use \pageboundary.

This will trigger the page builder but not leave anything behind. (This is experimental.)

14.6 Migration

Todo, nothing new there, so no hurry.

202

Callbacks

14.7 Callbacks

Todo, nothing new there, so no hurry.

14.7 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

203

15 Localboxes

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

localboxes

204

Introduction

Contents

15.1 Introduction 204

15.2 The basics 204

15.3 The interface 208

15.4 The helpers 213

15.1 Introduction

The LuaTEX engine inherited a few features from other engines and adding local boxes

to paragraphs is one of them. This concept comes from Omega but over time it has

been made a bit more robust, also by using native par nodes instead of whatsit nodes

that are used to support TEX's extensions. In another low level manual we discuss para­

graph properties and these local boxes are also part of that so you might want to catch

up on that. Local boxes are stored in an initial par node with an adequate subtype but

users wont' notice this (unless they mess around in Lua). The inline par nodes have a

different subtype and are injected with the \localinterlinepenalty, \localbroken­

penalty, \localleftbox, \localrightbox and LuaMetaTEX specific \localmiddlebox

primitives. WHen these primitives are used in vertical mode they just set registers.

The original (Omega) idea was that local boxes are used for repetitive punctuation (like

quotes) at the left and/or right end of the lines that make up a paragraph. That means

that when these primitives inject nodes they actually introduce states so that a stretch

of text can be marked.

When this mechanism was cleaned up in LuaMetaTEX I decided to investigate if other

usage made sense. After all, it is a feature that introduces some extra code and it then

pays of to use it when possible. Among the extensions are a callback that is triggered

when the left and right boxes get added and experiments with that showed some poten­

tial but in order to retain performance as well as limit extensive node memory usage

(par nodes are large) a system of indices was added. All this will be illustrated below.

Warning: the mechanism in LuaMetaTEX is not compatible with LuaTEX.

This is a preliminary, uncorrected manual.

15.2 The basics

This mechanism uses a mix of setting (pseudo horizontal) box registers that get asso­

ciated with (positions in a) paragraph. When the lines resulting from breaking the list

gets packaged into an horizontal (line) box, the local left and right boxes get prepended

205

The basics

and appended to the textual part (inside the left, right and parfills kips and left or right

hanging margins). When assigning the current local boxes to the paragraph node(s)

references to the pseudo registers are used and the packaging actually copies them.

This mix of referencing and copying is somewhat tricky but the engine does it best to

hide this for the user.

This mechanism is rather useless when not wrapped into some high level mechanism

because by default setting these boxes wipes the existing value. In LuaMetaTEX you

can actually access the boxes so prepending and appending is possible but experiments

showed that this could come with a huge performance hit when the lists are not cleaned

up during a run. This is why we have introduced indices: when you assign local boxes

using the index option that specific index will be replaced and therefore we have a more

sparse solution. So, contrary to LuaTEX, in LuaMetaTEX the local box registers have a

linked lists of local boxes tagged by index. Unless you manipulate in Lua, this is hidden

from the user. One can access the boxes from the TEX the but there can be no confusion

with LuaTEX here because there we don't have access. This is why usage as in LuaTEX

will also work in LuaMetaTEX.

This mechanism obeys grouping as is demonstrated in the next three examples. The

first example is:

\start

\dorecurse{10}{test #1.1 }

\localleftbox{\blackrule[width=2em,color=darkred] }

\dorecurse{20}{test #1.2 }

\removeunwantedspaces

\localrightbox{ \blackrule[width=3em,color=darkblue]}

\dorecurse{20}{test #1.3 }

\stop

\dorecurse{20}{test #1.4 }

% par ends here

The next example differs in a subtle way: watch the keep keyword, it makes the setting

retain after the group ends.

\start

\start

\dorecurse{10}{test #1.1 }

\localleftbox keep {\blackrule[width=2em,color=darkred] }

\dorecurse{20}{test #1.2 }

\removeunwantedspaces

\localrightbox { \blackrule[width=3em,color=darkblue]}

206

The basics

\dorecurse{20}{test #1.3 }

\stop

\dorecurse{20}{test #1.4 }

\stop

% par ends here

The third example has two times keep. This option is LuaMetaTEX specific.

\start

\start

\dorecurse{10}{test #1.1 }

\localleftbox keep {\blackrule[width=2em,color=darkred] }

\dorecurse{20}{test #1.2 }

\removeunwantedspaces

\localrightbox keep { \blackrule[width=3em,color=darkblue]}

\dorecurse{20}{test #1.3 }

\stop

\dorecurse{20}{test #1.4 }

\stop

% par ends here

One (nasty) side effect is that when you set these boxes ungrouped they are applied to

whatever follows, which is why resetting them is built in the relevant parts of ConTEXt.

The next examples are typeset grouped an demonstrate the use of indices:

\dorecurse{20}{before #1 }

\localleftbox{\bf \darkred L 1 }%

\localleftbox{\bf \darkred L 2 }%

\dorecurse{20}{after #1 }

before 1 before 2 before 3 before 4 before 5 before 6 before 7 before 8 before 9 before

10 before 11 before 12 before 13 before 14 before 15 before 16 before 17 before 18

before 19 before 20 after 1 after 2 after 3 after 4 after 5 after 6 after 7 after 8 after 9

L 2 after 10 after 11 after 12 after 13 after 14 after 15 after 16 after 17 after 18 after

L 2 19 after 20

Indices can be set for both sides:

\dorecurse{5}{\localrightbox index #1{ \bf \darkgreen R #1}}%

\dorecurse{20}{before #1 }

\dorecurse{5}{\localleftbox index #1{\bf \darkred L #1 }}%

\dorecurse{20}{after #1 }

207

The basics

test 1.1 test 2.1 test 3.1 test 4.1 test 5.1 test 6.1 test 7.1 test 8.1 test 9.1 test 10.1 test

1.2 test 2.2 test 3.2 test 4.2 test 5.2 test 6.2 test 7.2 test 8.2 test 9.2 test 10.2 test

11.2 test 12.2 test 13.2 test 14.2 test 15.2 test 16.2 test 17.2 test 18.2 test 19.2

test 20.2 test 1.3 test 2.3 test 3.3 test 4.3 test 5.3 test 6.3 test 7.3 test 8.3

test 9.3 test 10.3 test 11.3 test 12.3 test 13.3 test 14.3 test 15.3 test 16.3

test 17.3 test 18.3 test 19.3 test 20.3 test 1.4 test 2.4 test 3.4 test 4.4 test 5.4 test

6.4 test 7.4 test 8.4 test 9.4 test 10.4 test 11.4 test 12.4 test 13.4 test 14.4 test 15.4 test

16.4 test 17.4 test 18.4 test 19.4 test 20.4

Example 1

test 1.1 test 2.1 test 3.1 test 4.1 test 5.1 test 6.1 test 7.1 test 8.1 test 9.1 test 10.1 test

1.2 test 2.2 test 3.2 test 4.2 test 5.2 test 6.2 test 7.2 test 8.2 test 9.2 test 10.2 test

11.2 test 12.2 test 13.2 test 14.2 test 15.2 test 16.2 test 17.2 test 18.2 test 19.2

test 20.2 test 1.3 test 2.3 test 3.3 test 4.3 test 5.3 test 6.3 test 7.3 test 8.3

test 9.3 test 10.3 test 11.3 test 12.3 test 13.3 test 14.3 test 15.3 test 16.3

test 17.3 test 18.3 test 19.3 test 20.3 test 1.4 test 2.4 test 3.4 test 4.4 test 5.4 test

6.4 test 7.4 test 8.4 test 9.4 test 10.4 test 11.4 test 12.4 test 13.4 test 14.4 test 15.4 test

16.4 test 17.4 test 18.4 test 19.4 test 20.4

Example 2

test 1.1 test 2.1 test 3.1 test 4.1 test 5.1 test 6.1 test 7.1 test 8.1 test 9.1 test 10.1 test

1.2 test 2.2 test 3.2 test 4.2 test 5.2 test 6.2 test 7.2 test 8.2 test 9.2 test 10.2 test

11.2 test 12.2 test 13.2 test 14.2 test 15.2 test 16.2 test 17.2 test 18.2 test 19.2 test

20.2 test 1.3 test 2.3 test 3.3 test 4.3 test 5.3 test 6.3 test 7.3 test 8.3 test

9.3 test 10.3 test 11.3 test 12.3 test 13.3 test 14.3 test 15.3 test 16.3 test

17.3 test 18.3 test 19.3 test 20.3 test 1.4 test 2.4 test 3.4 test 4.4 test 5.4

test 6.4 test 7.4 test 8.4 test 9.4 test 10.4 test 11.4 test 12.4 test 13.4 test

14.4 test 15.4 test 16.4 test 17.4 test 18.4 test 19.4 test 20.4

Example 3

Figure 15.1

before 1 before 2 before 3 before 4 before 5 before 6 before 7 R 1 R 2 R 3 R 4 R 5

before 8 before 9 before 10 before 11 before 12 before 13 before R 1 R 2 R 3 R 4 R 5

14 before 15 before 16 before 17 before 18 before 19 before 20 R 1 R 2 R 3 R 4 R 5

after 1 after 2 after 3 after 4 after 5 after 6 after 7 after 8 after R 1 R 2 R 3 R 4 R 5

L 1 L 2 L 3 L 4 L 5 9 after 10 after 11 after 12 after 13 after 14 R 1 R 2 R 3 R 4 R 5

L 1 L 2 L 3 L 4 L 5 after 15 after 16 after 17 after 18 after 19 R 1 R 2 R 3 R 4 R 5

L 1 L 2 L 3 L 4 L 5 after 20 R 1 R 2 R 3 R 4 R 5

We can instruct this mechanism to hook the local box into the main par node by using

the par keyword. Keep in mind that these local boxes only come into play when the

208

The interface

lines are broken, so till then changing them is possible.

\dorecurse{3}{\localrightbox index #1{ \bf \darkgreen R #1}}%

\dorecurse{20}{before #1 }

\dorecurse{2}{\localleftbox par index #1{\bf \darkred L #1 }}%

\dorecurse{20}{after #1 }

L 1 L 2 before 1 before 2 before 3 before 4 before 5 before 6 before 7 before R 1 R 2 R 3

L 1 L 2 8 before 9 before 10 before 11 before 12 before 13 before 14 before R 1 R 2 R 3

L 1 L 2 15 before 16 before 17 before 18 before 19 before 20 after 1 after 2 R 1 R 2 R 3

L 1 L 2 after 3 after 4 after 5 after 6 after 7 after 8 after 9 after 10 after 11 R 1 R 2 R 3

L 1 L 2 after 12 after 13 after 14 after 15 after 16 after 17 after 18 after 19 R 1 R 2 R 3

L 1 L 2 after 20 R 1 R 2 R 3

15.3 The interface

The interface described here is experimental.

Because it is hard to foresee if this mechanism will be used at all the ConTEXt interface

is somewhat low level: one can build functionality on top of it. In the previous section

we saw examples of local boxes being part of the text but one reason for extending

the interface was to see if we can also use this engine feature for efficiently placing

marginal content.

\definelocalboxes

[lefttext]

[location=lefttext,width=3em,color=darkblue]

\definelocalboxes

[lefttextx]

[location=lefttext,width=3em,color=darkblue]

\definelocalboxes

[righttext]

[location=righttext,width=3em,color=darkyellow]

\definelocalboxes

[righttextx]

[location=righttext,width=3em,color=darkyellow]

The order of definition matters! Here the x variants have a larger index number. There

can (currently) be at most 256 indices. The defined local boxes are triggered with

\localbox:

209

The interface

\startnarrower

\dorecurse{20}{before #1 }%

\localbox[lefttext]{[L] }%

\localbox[lefttextx]{[LL] }%

\localbox[righttext]{ [RR]}%

\localbox[righttextx]{ [R]}%

\dorecurse{20}{ after #1}%

\stopnarrower

Watch how we obey the margins:

before 1 before 2 before 3 before 4 before 5 before 6 before 7 before 8 before 9

before 10 before 11 before 12 before 13 before 14 before 15 before 16 before 17

before 18 before 19 before 20 after 1 after 2 after 3 after 4 after 5 after [RR] [R]

[L] [LL] 6 after 7 after 8 after 9 after 10 after 11 after 12 after 13 after [RR] [R]

[L] [LL] 14 after 15 after 16 after 17 after 18 after 19 after 20 [RR] [R]

Here these local boxes have dimensions. The predefined margin variants are virtual.

Here we set up the style and color:

\setuplocalboxes

[leftmargin]

[style=\bs,

color=darkgreen]

\setuplocalboxes

[rightmargin]

[style=\bs,

color=darkred]

\dorecurse{2}{

\dorecurse{10}{some text #1.##1 }%

KEY#1.1%

\localmargintext[leftmargin]{L #1.1}%

\localmargintext[rightmargin]{R #1.1}%

\dorecurse{10}{some text #1.##1 }%

KEY#1.2%

\localmargintext[leftmargin]{L #1.2}%

\localmargintext[rightmargin]{R #1.2}%

\dorecurse{10}{some text #1.##1 }%

\blank

}

210

The interface

You can also use leftedge and rightedge but using them here would put them outside

the page.

some text 1.1 some text 1.2 some text 1.3 some text 1.4 some text 1.5 some text 1.6

some text 1.7 some text 1.8 some text 1.9 some text 1.10 KEY1.1some text 1.1 someL 1.1 R 1.1

text 1.2 some text 1.3 some text 1.4 some text 1.5 some text 1.6 some text 1.7 some

text 1.8 some text 1.9 some text 1.10 KEY1.2some text 1.1 some text 1.2 some text 1.3L 1.2 R 1.2

some text 1.4 some text 1.5 some text 1.6 some text 1.7 some text 1.8 some text 1.9

some text 1.10

some text 2.1 some text 2.2 some text 2.3 some text 2.4 some text 2.5 some text 2.6

some text 2.7 some text 2.8 some text 2.9 some text 2.10 KEY2.1some text 2.1 someL 2.1 R 2.1

text 2.2 some text 2.3 some text 2.4 some text 2.5 some text 2.6 some text 2.7 some

text 2.8 some text 2.9 some text 2.10 KEY2.2some text 2.1 some text 2.2 some text 2.3L 2.2 R 2.2

some text 2.4 some text 2.5 some text 2.6 some text 2.7 some text 2.8 some text 2.9

some text 2.10

In previous examples you can see that setting something at the left will lag behind so

deep down we use another trick here: \localmiddlebox. When these boxes get placed

a callback can be triggered and in ConTEXt we use that to move these middle boxes to

the margins.

Next we implement line numbers. Watch out: this will not replace the existing mech­

anisms, it's just an alternative as we have alternative table mechanisms. We have a

repertoire of helpers for constructing the result:

\definelocalboxes

[linenumberleft]

[command=\LeftNumber,

location=middle,

distance=\leftmargindistance,

width=3em,

style=\bs,

color=darkred]

\definelocalboxes

[linenumberright] % [linenumberleft]

[command=\RightNumber,

location=middle,

distance=\rightmargindistance,

width=3em,

style=\bf,

211

The interface

color=darkgreen]

\definecounter[MyLineNumberL]

\definecounter[MyLineNumberR]

\setupcounter

[MyLineNumberL]

[numberconversion=characters]

\setupcounter

[MyLineNumberR]

[numberconversion=romannumerals]

\def\LineNumberL

{\incrementcounter[MyLineNumberL]%

\convertedcounter[MyLineNumberL]}

\def\LineNumberR

{\incrementcounter[MyLineNumberR]%

\convertedcounter[MyLineNumberR]}

\protected\def\LeftNumber

{\setbox\localboxcontentbox\hbox

to \localboxesparameter{width}

{(\LineNumberL\hss\strut)}%

\localmarginlefttext\zeropoint}

\protected\def\RightNumber

{\setbox\localboxcontentbox\hbox

to \localboxesparameter{width}

{(\strut\hss\LineNumberR)}%

\localmarginrighttext\zeropoint}

\localbox[linenumberleft]{}%

\localbox[linenumberright]{}%

\dorecurse{2}{

\samplefile{tufte}

\par

}

\resetlocalbox[linenumberleft]%

\resetlocalbox[linenumberright]%

We use our tufte example to illustrate the usage:

212

The interface

We thrive in information--thick worlds because of our marvelous and everyday capacity(15.a) (15.i)

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­(15.b) (15.ii)

size, focus, organize, condense, reduce, boil down, choose, categorize, catalog, classify,(15.c) (15.iii)

list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeon­(15.d) (15.iv)

hole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, aver­(15.e) (15.v)

age, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into, flip(15.f) (15.vi)

through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize,(15.g) (15.vii)

winnow the wheat from the chaff and separate the sheep from the goats.(15.h) (15.viii)

We thrive in information--thick worlds because of our marvelous and everyday capacity(15.i) (15.ix)

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­(15.j) (15.x)

size, focus, organize, condense, reduce, boil down, choose, categorize, catalog, classify,(15.k) (15.xi)

list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeon­(15.l) (15.xii)

hole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, aver­(15.m) (15.xiii)

age, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into, flip(15.n) (15.xiv)

through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize,(15.o) (15.xv)

winnow the wheat from the chaff and separate the sheep from the goats.(15.p) (15.xvi)

For convenience we support ranges like this (we've reset the line number counters

here):

\startlocalboxrange[linenumberleft]%

\startlocalboxrange[linenumberright]%

\dorecurse{2}{

\samplefile{tufte}

\par

}

\stoplocalboxrange

\stoplocalboxrange

We thrive in information--thick worlds because of our marvelous and everyday capacity(15.a) (15.i)

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­(15.b) (15.ii)

size, focus, organize, condense, reduce, boil down, choose, categorize, catalog, classify,(15.c) (15.iii)

list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeon­(15.d) (15.iv)

hole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, aver­(15.e) (15.v)

age, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into, flip(15.f) (15.vi)

through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize,(15.g) (15.vii)

winnow the wheat from the chaff and separate the sheep from the goats.(15.h) (15.viii)

We thrive in information--thick worlds because of our marvelous and everyday capacity(15.i) (15.ix)

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe­(15.j) (15.x)

size, focus, organize, condense, reduce, boil down, choose, categorize, catalog, classify,(15.k) (15.xi)

213

The helpers

list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeon­(15.l) (15.xii)

hole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, aver­(15.m) (15.xiii)

age, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into, flip(15.n) (15.xiv)

through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize,(15.o) (15.xv)

winnow the wheat from the chaff and separate the sheep from the goats.(15.p) (15.xvi)

15.4 The helpers

For the moment we have these helpers:

\localboxindex integer

\localboxlinenumber integer

\localboxlinewidthdimension

\localboxlocalwidth dimension

\localboxprogress dimension

\localboxleftoffset dimension

\localboxrightoffset dimension

\localboxleftskip dimension

\localboxrightskip dimension

\localboxlefthang dimension

\localboxrighthang dimension

\localboxindent dimension

\localboxparfillleftskip dimension

\localboxparfillrightskip dimension

\localboxovershoot dimension

The progress and offsets are accumulated values of the normalized indent, hangs, skips

etc. The line number is the position in the paragraph. In the callback we set the box

register \localboxcontentbox and use it after the command has been applied. In the

line number example you can see how we set its final content, so these boxes are sort

of dynamic. Normally in the middle case no content is passed and in the par builder a

middle is not taken into account when calculating the line width.

214

Colofon

15.4 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

215

16 Loops

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

loops

216

Introduction

Contents

16.1 Introduction 216

16.2 Primitives 216

16.3 Wrappers 220

16.1 Introduction

I have hesitated long before I finally decided to implement native loops in LuaMetaTEX.

Among the reasons against such a feature is that one can define macros that do loops

(preferably using tail recursion). When you don't need an expandable loop, counters can

be used, otherwise there are dirty and obscure tricks that can be of help. This is often

the area where tex programmers can show off but the fact remains that we're using side

effects of the expansion machinery and specific primitives like \romannumeral magic.

In LuaMetaTEX it is actually possible to use the local control mechanism to hide loop

counter advance and checking but that comes with at a performance hit. And, no matter

what tricks one used, tracing becomes pretty much cluttered.

In the next sections we describe the new native loop primitives in LuaMetaTEX as well

as the more traditional ConTEXt loop helpers.

16.2 Primitives

Because MetaPost, which is also a macro language, has native loops, it makes sense to

also have native loops in TEX and in LuaMetaTEX it was not that hard to add it. One

variant uses the local control mechanism which is reflected in its name and two oth­

ers collect expanded bodies. In the local loop content gets injected as we go, so this

one doesn't work well in for instance an \edef. The macro takes the usual three loop

numbers as well as a token list:

\localcontrolledloop 1 100000 1 {%

% body

}

Here is an example of usage:

\localcontrolledloop 1 5 1 {%

[\number\currentloopiterator]

\localcontrolledloop 1 10 1 {%

(\number\currentloopiterator)

217

Primitives

}%

[\number\currentloopiterator]

\par

}

The \currentloopiterator is a numeric token so you need to explicitly serialize it with

\number or \the if you want it to be typeset:

[1] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) [1]

[2] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) [2]

[3] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) [3]

[4] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) [4]

[5] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) [5]

Here is another example. This time we also show the current nesting:

\localcontrolledloop 1 100 1 {%

\ifnum\currentloopiterator>6\relax

\quitloop

\else

[\number\currentloopnesting:\number\currentloopiterator]

\localcontrolledloop 1 8 1 {%

(\number\currentloopnesting:\number\currentloopiterator)

}\par

\fi

}

Watch the \quitloop: it will end the loop at the next iteration so any content after it

will show up. Normally this one will be issued in a condition and we want to end that

properly.

[1:1] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:2] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:3] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:4] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:5] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:6] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

The three loop variants all perform differently:

l:\testfeatureonce {1000} {\localcontrolledloop 1 2000 1 {\relax}} %

\elapsedtime

e:\testfeatureonce {1000} {\expandedloop 1 2000 1 {\relax}} %

218

Primitives

\elapsedtime

u:\testfeatureonce {1000} {\unexpandedloop 1 2000 1 {\relax}} %

\elapsedtime

An unexpanded loop is (of course) the fastest because it only collects and then feeds

back the lot. In an expanded loop each cycle does an expansion of the body and collects

the result which is then injected afterwards, and the controlled loop just expands the

body each iteration.

l: 0.082

e: 0.070

u: 0.023

The different behavior is best illustrated with the following example:

\edef\TestA{\localcontrolledloop 1 5 1 {A}} % out of order

\edef\TestB{\expandedloop 1 5 1 {B}}

\edef\TestC{\unexpandedloop 1 5 1 {C\relax}}

We can show the effective definition:

\meaningasis\TestA

\meaningasis\TestB

\meaningasis\TestC

A: \TestA

B: \TestB

C: \TestC

Watch how the first test pushes the content in the main input stream:

AAAAA

\def \TestA

\def \TestB BBBBB

\def \TestC C\relax C\relax C\relax C\relax C\relax

A:

B: BBBBB

C: CCCCC

Here are some examples that show what gets expanded and what not:

\edef\whatever

{\expandedloop 1 10 1

219

Primitives

{(\number\currentloopiterator)

\scratchcounter=\number\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever (1) \scratchcounter =1\relax (2) \scratchcounter =2\relax (3) \scratchcounter

=3\relax (4) \scratchcounter =4\relax (5) \scratchcounter =5\relax (6) \scratchcounter

=6\relax (7) \scratchcounter =7\relax (8) \scratchcounter =8\relax (9) \scratchcounter

=9\relax (10) \scratchcounter =10\relax

A local control encapsulation hides the assignment:

\edef\whatever

{\expandedloop 1 10 1

{(\number\currentloopiterator)

\beginlocalcontrol

\scratchcounter=\number\currentloopiterator\relax

\endlocalcontrol}}

\meaningasis\whatever

\def \whatever (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Here we see the assignment being retained but with changing values:

\edef\whatever

{\unexpandedloop 1 10 1

{\scratchcounter=1\relax}}

\meaningasis\whatever

\def \whatever \scratchcounter =1\relax \scratchcounter =1\relax \scratchcounter =1\relax

\scratchcounter =1\relax \scratchcounter =1\relax \scratchcounter =1\relax \scratchcounter

=1\relax \scratchcounter =1\relax \scratchcounter =1\relax \scratchcounter =1\relax

We get no expansion at all:

\edef\whatever

{\unexpandedloop 1 10 1

{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax

\scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter

=0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax

220

Wrappers

And here we have a mix:

\edef\whatever

{\expandedloop 1 10 1

{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever \scratchcounter =1\relax \scratchcounter =2\relax \scratchcounter =3\relax

\scratchcounter =4\relax \scratchcounter =5\relax \scratchcounter =6\relax \scratchcounter

=7\relax \scratchcounter =8\relax \scratchcounter =9\relax \scratchcounter =10\relax

There is one feature worth noting. When you feed three numbers in a row, like here,

there is a danger of them being seen as one:

\expandedloop

\number\dimexpr1pt

\number\dimexpr2pt

\number\dimexpr1pt

{}

This gives an error because a too large number is seen. Therefore, these loops permit

leading equal signs, as in assignments (we could support keywords but it doesn't make

much sense):

\expandedloop =\number\dimexpr1pt =\number\dimexpr2pt =\number\dimexpr1pt{}

16.3 Wrappers

We always had loop helpers in ConTEXt and the question is: “What we will gain when

we replace the definitions with ones using the above?”. The answer is: “We have little

performance but not as much as one expects!”. This has to do with the fact that we

support #1 as iterator and #2 as (verbose) nesting values and that comes with some

overhead. It is also the reason why these loop macros are protected (unexpandable).

However, using the primitives might look somewhat more natural in low level TEX code.

Also, replacing their definitions can have side effects because the primitives are (and

will be) still experimental so it's typically a patch that I will run on my machine for a

while.

Here is an example of two loops. The inner state variables have one hash, the outer one

extra:

221

Wrappers

\dorecurse{2}{

\dostepwiserecurse{1}{10}{2}{

(#1:#2) [##1:##2]

}\par

}

We get this:

(1:1) [1:2] (1:1) [3:2] (1:1) [5:2] (1:1) [7:2] (1:1) [9:2]

(2:1) [1:2] (2:1) [3:2] (2:1) [5:2] (2:1) [7:2] (2:1) [9:2]

We can also use two state macro but here we would have to store the outer ones:

\dorecurse {2} {

/\recursedepth:\recurselevel/

\dostepwiserecurse {1} {10} {2} {

<\recursedepth:\recurselevel>

}\par

}

That gives us:

/1:1/ <2:1> <2:3> <2:5> <2:7> <2:9>

/1:2/ <2:1> <2:3> <2:5> <2:7> <2:9>

An endless loop works as follows:

\doloop {

...

\ifsomeconditionismet

...

\exitloop

\else

...

\fi

% \exitloopnow

...

}

Because of the way we quit there will not be a new implementation in terms of the loop

primitives. You need to make sure that you don't leave in the middle of an ongoing

condition. The second exit is immediate.

We also have a (simple) expanded variant:

222

Colofon

\edef\TestX{\doexpandedrecurse{10}{!}} \meaningasis\TestX

This helper can be implemented in terms of the loop primitives which makes them a bit

faster, but these are not critical:

\def \TestX !!!!!!!!!!

A variant that supports #1 is the following:

\edef\TestX{\doexpandedrecursed{10}{#1}} \meaningasis\TestX

So:

\def \TestX 12345678910

16.3 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

223

17 Tokens

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

tokens

224

Introduction

Contents

17.1 Introduction 224

17.2 What are tokens 224

17.3 Some implementation details 228

17.4 Other data management 229

17.5 Macros 230

17.6 Looking at tokens 230

17.1 Introduction

Most users don't need to know anything about tokens but it happens that when TEXies

meet in person (users group meetings), or online (support platforms) there always seem

to pop up folks who love token speak. When you try to explain something to a user it

makes sense to talk in terms of characters but then those token speakers can jump in

and start correcting you. In the past I have been puzzled by this because, when one can

write a decent macro that does the job well, it really doesn't matter if one knows about

tokens. Of course one should never make the assumption that token speakers really

know TEX that well or can come up with better solutions than users but that is another

matter.23

That said, because in documents about TEX the word ‘token’ does pop up I will try to

give a little insight here. But for using TEX it's mostly irrelevant. The descriptions below

for sure won't match the proper token speak criteria which is why at a presentation for

the 2020 user meeting I used the title “Tokens as I see them.”

17.2 What are tokens

Both the words ‘node’ and ‘token’ are quite common in programming and also rather

old which is proven by the fact that they also are used in the TEX source. A node is

a storage container that is part of a linked list. When you input the characters tex

the three characters become part of the current linked list. They become ‘character’

nodes (or in LuaTEX speak ‘glyph’ nodes) with properties like the font and the character

referred to. But before that happens, the three characters in the input t, e and x, are

interpreted as in this case being just that: characters. When you enter \TeX the input

processors first sees a backslash and because that has a special meaning in TEX it will

23 Talking about fashion: it would be more impressive to talk about TEX and friends as a software stack than

calling it a distribution. Today, it's all about marketing.

225

What are tokens

read following characters and when done does a lookup in it's internal hash table to

see what it actually is: a macro that assembled the word TEX in uppercase with special

kerning and a shifted (therefore boxed) ‘E’. When you enter $ TEX will look ahead for a

second one in order to determine display math, push back the found token when there

is no match and then enter inline math mode.

A token is internally just a 32 bit number that encodes what TEX has seen. It is the

assembled token that travels through the system, get stored, interpreted and often

discarded afterwards. So, the character ‘e’ in our example gets tagged as such and

encoded in this number in a way that the intention can be derived later on.

Now, the way TEX looks at these tokens can differ. In some cases it will just look at

this (32 bit) number, for instance when checking for a specific token, which is fast, but

sometimes it needs to know some detail. The mentioned integer actually encodes a

command (opcode) and a so called char code (operand). The second name is somewhat

confusing because in many cases that code is not representing a character but that is

not that relevant here. When you look at the source code of a TEX engine it is enough

to know that a char can also be a sub command.

token = cmd chr

Back to the three characters: these become tokens where the command code indicates

that it is a letter and the char code stores what letter we have at hand and in the case of

LuaTEX and LuaMetaTEX these are Unicode values. Contrary to the traditional 8 bit TEX

engine, in the Unicode engines an utf sequence is read, but these multiple bytes still

become one number that will be encoded in the token number. In order to determine

that something is a letter the engine has to be told (which is what a macro package does

when it sets up the engine). For instance, digits are so called other characters and the

backslash is called escape. Every TEX user knows that curly braces are special and so

are dollar symbols and hashes. If this rings a bell, and you relate this to catcodes, you

can indeed assume that the command codes of these tokens have the same numbers as

the catcodes. Given that Unicode has plenty of characters slots you can imagine that

combining 16 catcode commands with all the possible Unicode values makes a large

repertoire of tokens.

There are more commands than the 16 basic characters related ones, in LuaMetaTEX

we have just over 150 command codes (LuaTEX has a few more but they are also or­

ganized differently). Each of these codes can have a sub command, For instance the

primitives \vbox and \hbox are both a make_box_cmd (we use the symbolic name here)

and in LuaMetaTEX the first one has sub command code 9 (vbox_code) and the second

one has code 10 (hbox_code). There are twelve primitives that are in the same category.

226

What are tokens

The many primitives that make up the core of the engine are grouped in a way that per­

mits processing similar ones with one function and also makes it possible to distinguish

between the way commands are handled, for instance with respect to expansion.

Now, before we move on it is important to know that al these codes are in fact abstract

numbers. Although it is quite likely that engines that are derived from each other have

similar numbers (just more) this is not the case for LuaMetaTEX. Because the internals

have been opened up (even more than in LuaTEX) the command and char codes have

been reorganized in a such a way that exposure is consistent. We could not use some

of the reuse and remap tricks that the other engines use because it would simply be

too confusing (and demand real in depth knowledge of the internals). This is also the

reason why development took some time. You probably won't notice it from the current

source but it was a very stepwise process. We not only had to make sure that all kept

working (ConTEXt LMTX and LuaMetaTEX were pretty useable during the process), but

also had to (re)consider intermediate choices.

So, input is converted into tokens, in most cases one-by-one. When a token is assem­

bled, it either gets stored (deliberately or as part of some look ahead scanning), or it

immediately gets (what is called:) expanded. Depending on what the command is, some

action is triggered. For instance, a character gets appended to the node list immedi­

ately. An \hbox command will start assembling a box which its own node list that then

gets some treatment: if this primitive was a follow up on \setbox it will get stored,

otherwise it might end up in the current node list as so called hlist node. Commands

that relate to registers have 0xFFFF char codes because that is how many registers we

have per category.

When a token gets stored for later processing it becomes part of a larger data structure,

a so called memory word. These memory words are taken from a large pool of words

and they store a token and additional properties. The info field contains the token value,

the mentioned command and char. When there is no linked list, the link can actually be

used to store a value, something that in LuaMetaTEX we actually do.

1 info link

2 info link

3 info link

n info link

When for instance we say \toks 0 {tex} the scanner sees an escape, followed by 4 let­

ters (toks) and the escape triggers a lookup of the primitive (or macro or . . .) with that

name, in this case a primitive assignment command. The found primitive (its property

gets stored in the token) triggers scanning for a number and when that is successful

227

What are tokens

scanning of a brace delimited token list starts. The three characters become three let­

ter tokens and these are a linked list of the mentioned memory words. This list then

gets stored in token register zero. The input sequence \the\toks 0 will push back a

copy of this list into the input.

In addition to the token memory pool, there is also a table of equivalents. That one is

part of a larger table of memory words where TEX stores all it needs to store. The 16

groups of character commands are virtual, storing these makes no sense, so the first

real entries are all these registers (count, dimension, skip, box, etc). The rest is taken

up by possible hash entries.

main hash null control sequence

128K hash entries

frozen control sequences

special sequences (undefined)

registers 17 internal & 64K user glues

4 internal & 64K user mu glues

12 internal & 64K user tokens

2 internal & 64K user boxes

116 internal & 64K user integers

0 internal & 64K user attribute

22 internal & 64K user dimensions

specifications 5 internal & 0 user

extra hash additional entries (grows dynamic)

So, a letter token t is just that, a token. A token referring to a register is again just a

number, but its char code points to a slot in the equivalents table. A macro, which we

haven't discussed yet, is actually just a token list. When a name lookup happens the

hash table is consulted and that one runs in parallel to part of the table of equivalents.

When there is a match, the corresponding entry in the equivalents table points to a

token list.

228

Some implementation details

1 string index equivalents or (next > n) index

2 string index equivalents or (next > n) index

n string index equivalents or (next > n) index

n + 1 string index equivalents or (next > n) index

n + 2 string index equivalents or (next > n) index

n + m string index equivalents or (next > n) index

It sounds complex and it actually also is somewhat complex. It is not made easier by

the fact that we also track information related to grouping (saving and restoring), need

reference counts for copies of macros and token lists, sometimes store information di­

rectly instead of via links to token lists, etc. And again one cannot compare LuaMetaTEX

with the other engines. Because we did away with some of the limitations of the tradi­

tional engine we not only could save some memory but in the end also simplify matters

(we're 32/64 bit after all). On the one hand some traditional speedups were removed

but these have been compensated by improvements elsewhere, so overall processing is

more efficient.

1 level type flag value

2 level type flag value

3 level type flag value

n level type flag value

So, here LuaMetaTEX differs from other engines because it combines two tables, which

is possible because we have at least 32 bits. There are at most 0xFFFF levels but we need

at most 0xFF types. in LuaMetaTEX macros can have extra properties (flags) and these

also need one byte. Contrary to the other engines, \protected macros are native and

have their own command code, but \tolerant macros duplicate that (so we have four

distinct macro commands). All other properties, like the \permanent ones are stored in

the flags.

Because a macro starts with a reference count we have some room in the info field

to store information about it having arguments or not. It is these details that make

LuaMetaTEX a bit more efficient in terms of memory usage and performance than its

ancestor LuaTEX. But as with the other changes, it was a very stepwise process in order

to keep the system compatible and working.

17.3 Some implementation details

Sometimes there is a special head token at the start. This makes for easier appending

of extra tokens. In traditional TEX node lists are forward linked, in LuaTEX they are

229

Other data management

double linked24. Token lists are always forward linked. Shared token lists use the head

node for a reference count.

For various reasons original TEX uses global variables temporary lists. This is for in­

stance needed when we expand (nested) and need to report issues. But in LuaTEX we

often just serialize lists and using local variables makes more sense. One of the first

things done in LuaMetaTEX was to group all global variables in (still global) structures

but well isolated. That also made it possible to actually get rid of some globals.

Because TEX had to run on machines that we nowadays consider rather limited, it had

to be sparse and efficient. There are quite some optimizations to limit code and memory

consumption. The engine also does its own memory management. Freed token memory

words are collected in a cache and reused but they can get scattered which is not that

bad, apart from maybe cache hits. In LuaMetaTEX we stay as close to original TEX

as possible but there have been some improvements. The Lua interfaces force us to

occasionally divert from the original, and that in fact might lead to some retrofit but the

original documentation still mostly applies. However, keep in mind that in LuaTEX we

store much more in nodes (each has a prev pointer and an attribute list pointer and for

instance glyph nodes have some 20 extra fields compared to traditional TEX character

nodes).

17.4 Other data management

There is plenty going on in TEX when it processes your input, just to mention a few:

• Grouping is handled by a nesting stack.

• Nested conditionals (\if...) have their own stack.

• The values before assignments are saved on the save stack.

• Also other local changes (housekeeping) ends up in the save stack.

• Token lists and macro aliases have references pointers (reuse).

• Attributes, being linked node lists, have their own management.

In all these subsystems tokens or references to tokens can play a role. Reading a single

character from the input can trigger a lot of action. A curly brace tagged as begin

group command will push the grouping level and from then on registers and some other

quantities that are changed will be stored on the save stack so that after the group ends

they can be restored. When primitives take keywords, and no match happens, tokens

are pushed back into the input which introduces a new input level (also some stack).

24 On the agenda of LuaMetaTEX is to use this property in the underlying code, that doesn't yet profit from

this and therefore keep previous pointers in store.

230

Macros

When numbers are read a token that represents no digit is pushed back too and macro

packages use numbers and dimensions a lot. It is a surprise that TEX is so fast.

17.5 Macros

There is a distinction between primitives, the build in commands, and macros, the com­

mands defined by users. A primitive relates to a command code and char code but

macros are, unless they are made an alias to something else, like a \countdef or \let

does, basically pointers to a token list. There is some additional data stored that makes

it possible to parse and grab arguments.

When we have a control sequence (macro) \controlsequence the name is looked up in

the hash table. When found its value will point to the table of equivalents. Asmentioned,

that table keeps track of the cmd and points to a token list (the meaning). We saw that

this table also stores the current level of grouping and flags.

If we say, in the input, \hbox to 10pt {x\hss}, the box is assembled as we go and when

it is appended to the current node list there are no tokens left. When scanning this, the

engine literally sees a backslash and the four letters hbox. However when we have this:

\def\MyMacro{\hbox to 10pt {x\hss}}

the \hbox has become one memory word which has a token representing the \hbox

primitive plus a link to the next token. The space after a control sequence is gobbled so

the next two tokens, again stored in a linked memory word, are letter tokens, followed

by two other and two letter tokens for the dimensions. Then we have a space, a brace,

a letter, a primitive and a brace. The about 20 characters in the input became a dozen

memory words each two times four bytes, so in terms of memory usage we end up with

quite a bit more. However, when TEX runs over that list it only has to interpret the

token values because the scanning and conversion already happened. So, the space

that a macro takes is more than compensated by efficient reprocessing.

17.6 Looking at tokens

When you say \tracingall you will see what the engine does: read input, expand

primitives and macros, typesetting etc. You might need to set \tracingonline to get

a bit more output on the console. One way to look at macros is to use the \meaning

command, so if we have:

\permanent\protected\def\MyMacro#1#2{Do #1 or #2!}

we can say this:

231

Looking at tokens

\meaning \MyMacro

\meaningless\MyMacro

\meaningfull\MyMacro

and get:

protected macro:#1#2->Do #1 or #2!

#1#2->Do #1 or #2!

permanent protected macro:#1#2->Do #1 or #2!

You get less when you ask for themeaning of a primitive, just its name. The \meaningfull

primitive gives the most information. In LuaMetaTEX protected macros are first class

commands: they have their own command code. In the other engines they are just

regular macros with an initial token indicating that they are protected. There are spe­

cific command codes for \outer and \long macros but we dropped that in LuaMeta­

TEX. Instead we have \tolerant macros but that's another story. The flags that were

mentioned can mark macros in a way that permits overload protection as well as some

special treatment in otherwise tricky cases (like alignments). The overload related flags

permits a rather granular way to prevent users from redefining macros and such. They

are set via prefixes, and add to that repertoire: we have 14 prefixes but only some eight

deal with flags (we can add more if really needed). The probably most wel known prefix

is \global and that one will not become a flag: it has immediate effect.

For the above definition, the \showluatokens command will show a meaning on the

console.

\showluatokens\MyMacro

This gives the next list, where the first column is the address of the token, the second

one the command code, and the third one the char code. When there are arguments

involved, the list of what needs to get matched is shown.

permanent protected control sequence: MyMacro

501263 19 49 match argument 1

501087 19 50 match argument 2

385528 20 0 end match

501090 11 68 letter D (U+00044)

30833 11 111 letter o (U+0006F)

500776 10 32 spacer

385540 21 1 parameter reference

112057 10 32 spacer

232

Looking at tokens

431886 11 111 letter o (U+0006F)

30830 11 114 letter r (U+00072)

30805 10 32 spacer

500787 21 2 parameter reference

213412 12 33 other char ! (U+00021)

In the next subsections I will give some examples. This time we use helper defined in a

module:

\usemodule[system-tokens]

17.6.1 Example 1: in the input

\luatokentable{1 \bf{2} 3\what {!}}

given token list:

547274 12 49 other char 1 U+00031

547292 10 32 spacer

199105 138 0 protected call bf

548230 1 123 left brace

543836 12 50 other char 2 U+00032

546118 2 125 right brace

547402 10 32 spacer

546131 12 51 other char 3 U+00033

413323 125 0 undefined cs what

545819 1 123 left brace

546134 12 33 other char ! U+00021

32660 2 125 right brace

17.6.2 Example 2: in the input

\luatokentable{a \the\scratchcounter b \the\parindent \hbox to 10pt{x}}

given token list:

211403 11 97 letter a U+00061

546626 10 32 spacer

547409 135 0 the the

540386 108 1026 integer scratchcounter

543850 11 98 letter b U+00062

546087 10 32 spacer

546261 135 0 the the

539360 90 0 internal dimen parindent

547309 30 14 make box hbox

544093 11 116 letter t U+00074

545711 11 111 letter o U+0006F

546526 10 32 spacer

233

Looking at tokens

546897 12 49 other char 1 U+00031

545982 12 48 other char 0 U+00030

547047 11 112 letter p U+00070

545526 11 116 letter t U+00074

547434 1 123 left brace

544780 11 120 letter x U+00078

544305 2 125 right brace

17.6.3 Example 3: user registers

\scratchtoks{foo \framed{\red 123}456}

\luatokentable\scratchtoks

token register: scratchtoks

483734 11 102 letter f U+00066

546873 11 111 letter o U+0006F

545867 11 111 letter o U+0006F

545799 10 32 spacer

543179 141 0 tolerant protected call framed

545170 1 123 left brace

546396 138 0 protected call red

546436 12 49 other char 1 U+00031

547499 12 50 other char 2 U+00032

544840 12 51 other char 3 U+00033

545370 2 125 right brace

547446 12 52 other char 4 U+00034

547070 12 53 other char 5 U+00035

544114 12 54 other char 6 U+00036

17.6.4 Example 4: internal variables

\luatokentable\everypar

internal token variable: everypar

546316 138 0 protected call dotagsetparcounter

546330 138 0 protected call page_otr_command_synchronize_side_floats

547249 138 0 protected call checkindentation

546186 137 0 call showparagraphnumber

545791 138 0 protected call restoreinterlinepenalty

547294 137 0 call flushnotes

546062 138 0 protected call registerparoptions

545380 137 0 call flushpostponednodedata

543064 137 0 call typo_delimited_repeat

547323 137 0 call spac_paragraphs_flush_intro

211373 137 0 call typo_initial_handle

547356 137 0 call typo_firstline_handle

234

Looking at tokens

546280 137 0 call spac_paragraph_wrap

546093 138 0 protected call spac_paragraph_freeze

17.6.5 Example 5: macro definitions

\protected\def\whatever#1[#2](#3)\relax

{oeps #1 and #2 & #3 done ## error}

\luatokentable\whatever

protected control sequence: whatever

545891 19 49 match argument 1

543474 12 91 other char [U+0005B

546708 19 50 match argument 2

546138 12 93 other char] U+0005D

547448 12 40 other char (U+00028

546975 19 51 match argument 3

422154 12 41 other char) U+00029

547264 16 0 relax relax

547410 20 0 end match

545175 11 111 letter o U+0006F

547126 11 101 letter e U+00065

545698 11 112 letter p U+00070

546932 11 115 letter s U+00073

546852 10 32 spacer

544158 21 1 parameter reference

545555 10 32 spacer

547652 11 97 letter a U+00061

545658 11 110 letter n U+0006E

546952 11 100 letter d U+00064

544377 10 32 spacer

547425 21 2 parameter reference

546536 10 32 spacer

546936 12 38 other char & U+00026

547480 10 32 spacer

547638 21 3 parameter reference

544973 10 32 spacer

546397 11 100 letter d U+00064

543562 11 111 letter o U+0006F

544024 11 110 letter n U+0006E

546776 11 101 letter e U+00065

413151 10 32 spacer

547293 6 35 parameter

545398 10 32 spacer

547083 11 101 letter e U+00065

544134 11 114 letter r U+00072

547547 11 114 letter r U+00072

546629 11 111 letter o U+0006F

546020 11 114 letter r U+00072

235

Looking at tokens

17.6.6 Example 6: commands

\luatokentable\startitemize

\luatokentable\stopitemize

frozen instance protected control sequence: startitemize

546332 141 0 tolerant protected call startitemgroup

542558 12 91 other char [U+0005B

547162 11 105 letter i U+00069

543567 11 116 letter t U+00074

546107 11 101 letter e U+00065

540209 11 109 letter m U+0006D

547247 11 105 letter i U+00069

544261 11 122 letter z U+0007A

543448 11 101 letter e U+00065

547284 12 93 other char] U+0005D

frozen instance protected control sequence: stopitemize

544404 138 0 protected call stopitemgroup

17.6.7 Example 7: commands

\luatokentable\doifelse

permanent protected control sequence: doifelse

546713 19 49 match argument 1

545022 19 50 match argument 2

546094 20 0 end match

546765 132 26 if test iftok

547427 1 123 left brace

546977 21 1 parameter reference

546666 2 125 right brace

539231 1 123 left brace

544490 21 2 parameter reference

547115 2 125 right brace

546424 126 0 expand after expandafter

547382 137 0 call firstoftwoarguments

540275 132 3 if test else

547371 126 0 expand after expandafter

548249 137 0 call secondoftwoarguments

543611 132 2 if test fi

17.6.8 Example 8: nothing

\luatokentable\relax

236

Looking at tokens

primitive control sequence: relax

548251 16 0 relax relax

17.6.9 Example 9: hashes

\edef\foo#1#2{(#1)(\letterhash)(#2)} \luatokentable\foo

control sequence: foo

545963 19 49 match argument 1

546566 19 50 match argument 2

539348 20 0 end match

542910 12 40 other char (U+00028

545068 21 1 parameter reference

543782 12 41 other char) U+00029

546678 12 40 other char (U+00028

89083 12 35 other char # U+00023

547028 12 41 other char) U+00029

548219 12 40 other char (U+00028

547585 21 2 parameter reference

547388 12 41 other char) U+00029

17.6.10 Example 10: nesting

\def\foo#1{\def\foo##1{(#1)(##1)}} \luatokentable\foo

control sequence: foo

544222 19 49 match argument 1

546238 20 0 end match

547604 121 1 def def

547500 137 0 call foo

547527 6 35 parameter

547991 12 49 other char 1 U+00031

549370 1 123 left brace

545854 12 40 other char (U+00028

542670 21 1 parameter reference

547505 12 41 other char) U+00029

547460 12 40 other char (U+00028

547355 6 35 parameter

547342 12 49 other char 1 U+00031

546196 12 41 other char) U+00029

545684 2 125 right brace

237

Colofon

17.6.11 Remark

In all these examples the numbers are to be seen as abstractions. Some command codes

and sub command codes might change as the engine evolves. This is why the Lua­

MetaTEX engine has lots of Lua functions that provide information about what number

represents what command.

17.6.11 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

238

18 Buffers

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

buffers

239

Preamble

Contents

18.1 Preamble 239

18.2 Encoding 239

18.3 Performance 241

18.4 Files 241

18.5 Macros 242

18.6 Token lists 243

18.7 Buffers 243

18.8 Setups 246

18.9 xml 247

18.10Lua 248

18.11Protection 248

18.1 Preamble

Buffers are not that low level but it makes sense to discuss them in this perspective

because it relates to tokenization, internal representation and manipulating.

In due time we can describe some more commands and details here. This is a start.

Feel free to tell me what needs to be explained.

18.2 Encoding

Normally processing a document starts with reading from file. In the past we were talk­

ing single bytes that were then maps onto a specific input encoding that itself matches

the encoding of a font. When you enter an ‘a’ its (normally ascii) number 97 becomes

the index into a font. That same number is also used in the hyphenator which is why font

encoding and hyphenation are strongly related. If in an eight bit TEX engine you need a

precomposed ‘ä’ you have to use an encoding that has that character in some slot with

again matching fonts and patterns. The actually used font can have the shapes in differ­

ent slots and remapping is then done in the backend code using encoding and mapping

files. When OpenType fonts are used the relationship between characters (input) and

glyphs (rendering) also depends on the application of font features.

In eight bit environments all this brings a bit of a resource management nightmare

along with complex installation of new fonts. It also puts strain on the macro package,

especially when you want to mix different input encodings onto different font encodings

and thereby pattern encodings in the same document. You can compare this with code

pages in operating system, but imagine them potentially being mixed in one document,

240

Encoding

which can happen when you mix multiple languages where the accumulated number

of different characters exceeds 256. You end up switching between encodings. One

way to deal with it is making special characters active and let their meaning differ per

situation. That is for instance how in MkII we handled utf8 and thereby got around

distributing multiple pattern files per language as we only needed to encoding them in

utf and then remap them to the required encoding when loading patterns. A mental

exercise is wondering how to support cjk scripts in an eight bit MkII, something that

actually can be done with some effort.

The good news is that when we moved from MkII to MkIV we went exclusively utf8

because that is what the LuaTEX engine expects. Upto four bytes are read in and trans­

lated into one Unicode character. The internal representation is a 32 bit integer (four

bytes) instead of a single byte. That also means that in the transition we got rid of

quite some encoding related low level font and pattern handling. We still support input

encodings (called regimes in ConTEXt) but I'm pretty sure that nowadays no one uses

input other than utf8. While ConTEXt is normally quite upward compatible this is one

area where there were fundamental changes.

There is still some interpretation going on when reading from file: for instance, we need

to normalize the Unicode input, and we feed the engine separate lines on demand. Apart

from that, some characters like the backslash, dollar sign and curly braces have special

meaning so for accessing them as characters we have to use commands that inject those

characters. That didn't change when we went from MkII to MkIV. In practice it's never

really a problem unless you find yourself in one of the following situations:

• Example code has to be typeset as-is, so braces etc. are just that. This means that

we have to change the way characters are interpreted. Typesetting code is needed

when you want to document TEX and macros which is why mechanisms for that have

to be present right from the start.

• Content is collected and used later. A separation of content and usage later on often

helps making a source look cleaner. Examples are “wrapping a table in a buffer” and

“including that buffer when a table is placed” using the placement macros.

• Embedded MetaPost and Lua code. These languages come with different interpreta­

tion of some characters and especially MetaPost code is often stored first and used

(processed) later.

• The content comes from a different source. Examples are xml files where angle

brackets are special but for instance braces aren't. The data is interpreted as a

stream or as a structured tree.

241

Performance

• The content is generated. It can for instance come from Lua, where bytes (repre­

senting utf) is just text and no special characters are to be intercepted. Or it can

come from a database (using a library).

For these reasons ConTEXt always had ways to store data in ways that makes this possi­

ble. The details on how that is done might have changed over versions, been optimized,

extended with additional interfaces and features but given where we come from most

has been there from the start.

18.3 Performance

When TEX came around, the bottlenecks in running TEXwere the processor, memory and

disks and depending on the way one used it the speed of the console or terminal; so,

basically the whole system. One could sit there and wait for the page counters ([1] [2]

.. to show up. It was possible to run TEX on a personal computer but it was somewhat

resource hungry: one needed a decent disk (a 10MBhard disk was huge andwith todays

phone camera snapshots that sounds crazy). One could use memory extenders to get

around the 640K limitation (keep in mind that the programs and operating systems also

took space). This all meant that one could not afford to store too many tokens in memory

but even using files for all kind of (multi-pass) trickery was demanding.

When processors became faster and memory plenty the disk became the bottleneck,

but that changed when ssd's showed up. Combined with already present file caching

that had some impact. We are now in a situation that cpu cores don't get that much

faster (at least not twice as fast per iteration) and with TEX being a single core byte

cruncher we're more or less in a situation where performance has to come from efficient

programming. That means that, given enough memory, in some cases storing in tokens

wins over storing in files, but it is no rule. In practice there is not much difference so

one can even more than yesterday choose for the most convenient method. Just assume

that the ConTEXt code, combined with LuaMetaTEX will give you what you need with a

reasonable performance. When in doubt, test with simple test files and it that works out

well compared to the real code, try to figure out where ‘mistakes’ are made. Inefficient

Lua and TEX code has way more impact than storing a few more tokens or using some

files.

18.4 Files

Nearly always files are read once per run. The content (mixed with commands) is

scanned and macros are expanded and/or text is typeset as we go. Internally the Lua­

MetaTEX engine is in “scanning from file”, “scanning from token lists”, or “scanning

242

Macros

from Lua output” mode. The first mode is (in principle) the slowest because utf se­

quences are converted to tokens (numbers) but there is no way around it. The second

method is fast because we already have these numbers, but we need to take into account

where the linked list of tokens comes from. If it is converted runtime from for instance

file input or macro expansion we need to add the involved overhead. But scanning a

stored macro body is pretty efficient especially when the macro is part of the loaded

macro package (format file). The third method is comparable with reading from file but

here we need to add the overhead involved with storing the Lua output into data struc­

tures suitable for TEX's input mechanism, which can involve memory allocation outside

the reserved pool of tokens. On modern systems that is not really a problem. It is good

to keep in mind that when TEX was written much attention was paid to optimization and

in LuaMetaTEX we even went a bit further, also because we know what kind of input,

processing and output we're dealing with.

When reading from file or Lua output we interpret bytes turned utf numbers and that

is when catcode regimes kick in: characters are interpreted according to the catcode

properties: escape character (backslash), curly braces (grouping and arguments), dol­

lars (math), etc. While with reading from token lists these catcodes are already taken

care of and we're basically interpreting meanings instead of characters. By changing

the catcode regime we can for instance typeset content verbatim from files and Lua

strings but when reading from token lists we're sort of frozen. There are tricks to rein­

terpret the token list but that comes with overhead and limitations.

18.5 Macros

Amacro can be seen as a named token with a meaning attached. In LuaMetaTEXmacros

can take up to 15 arguments (six more than regular TEX) that can be separated by so

called delimiters. A token has a command property (operator) and a value (operand).

Because a Unicode character doesn't need all four bytes of an integer and because in

the engine numbers, dimensions and pointers are limited in size we can store all of these

efficiently with the command code. Here the body of \foo is a list of three tokens:

\def\foo{abc} \foo \foo \foo

When the engine fetches a token from a list it will interpret the command and when it

fetches from file it will create tokens on the fly and then interpret those. When a file or

list is exhausted the engine pops the stack and continues at the previous level. Because

macros are already tokenized they are more efficient than file input. For more about

macros you can consult the low level document about them.

243

Token lists

The more you use a macro, the more it pays off compared to a file. However don't

overestimate this, because in the end the typesetting and expanding all kind of other

involved macros might reduce the file overhead to noise.

18.6 Token lists

A token list is like a macro but is part of the variable (register) system. It is just a list

(so no arguments) and you can append and prepend to that list.

\toks123={abc} \the\toks123

\scratchtoks{abc} \the\scratchtoks

Here \scratchtoks is defined with \newtoks which creates an efficient reference to a

list so that, contrary to the first line, no register number has to be scanned. There are

low level manuals about tokens and registers that you can read if you want to know

more about this. As with macros the list in this example is three tokens long. Contrary

to macros there is no macro overhead as there is no need to check for arguments.25

Because they use more or less the same storage method macros and token list registers

perform the same. The power of registers comes from some additional manipulators

in LuaTEX (and LuaMetaTEX) and the fact that one can control expansion with \the,

although that later advantage is compensated with extensions to the macro language

(like \protected macro definitions).

18.7 Buffers

Buffers are something specific for ConTEXt and they have always been part of this sys­

tem. A buffer is defined as follows:

\startbuffer[one]

line 1

line 2

\stopbuffer

Among the operations on buffers the next two are used most often:

\typebuffer[one]

\getbuffer[one]

25 In LuaMetaTEX a macro without arguments is also quite efficient.

244

Buffers

Scanning a buffer at the TEX end takes a little effort because when we start reading

the catcodes are ignored and for instance backslashes and curly braces are retained.

Hardly any interpretation takes place. The same is true for spacing, so multiple spaces

are not collapsed and newlines stay. The tokenized content of a buffer is converted

back to a string and that content is then read in as a pseudo file when we need it. So,

basically buffers are files! In MkII they actually were files (in the \jobname name space

and suffix tmp), but in MkIV they are stored in and managed by Lua. That also means

that you can set them very efficiently at the Lua end:

\startluacode

buffers.assign("one",[[

line 1

line 2

]])

\stopluacode

Always keep in mind that buffers eventually are read as files: character by character,

and at that time the content gets (as with other files) tokenized. A buffer name is op­

tional. You can nest buffers, with and without names.

Because ConTEXt is very much about re-use of content and selective processing we have

an (already old) subsystem for defining named blocks of text (using \begin... and

\end... tagging. These blocks are stored just like buffers but selective flushing is part

of the concept. Think of coding an educational document with explanations, questions,

answers and then typesetting only the explanations, or the explanation along width

some questions. Other components can be typeset later so one can make for instance a

special book(let) with answers that either of not repeats the questions. Here we need

features like synchronization of numbers so that's why we cannot really use buffers. An

alternative is to use xml and filter from that.

The \definebuffer command defines a new buffer environment. When you set buffers

in Lua you don't need to define a buffer because likely you don't need the \start and

\stop commands. Instead of \getbuffer you can also use \getdefinedbuffer with

defined buffers. In that case the before and after keys of that specific instance are

used.

The \getinlinebuffer command, which like the getters takes a list of buffer names,

ignores leading and trailing spaces. When multiple buffers are flushed this way, spacing

between buffers is retained.

The most important aspect of buffers is that the content is not interpreted and tok­

enized: the bytes stay as they are.

245

Buffers

\definebuffer[MyBuffer]

\startMyBuffer

\bold{this is

a buffer}

\stopMyBuffer

\typeMyBuffer \getMyBuffer

These commands result in:

\bold{this is

a buffer}

this is a buffer

There are not that many parameters that can be set: before, after and strip (when

set to no leading and trailing spacing will be kept. The \stop... command, in our

example \stopMyBuffer, can be defined independent to so something after the buffer

has be read and stored but by default nothing is done.

You can test if a buffer exists with \doifelsebuffer (expandable) and \doifelse­

bufferempty (unexpandable). A buffer is kept in memory unless it gets wiped clean

with resetbuffer.

\savebuffer [MyBuffer][temp] % gets name: jobname-temp.tmp

\savebufferinfile[MyBuffer][temp.log] % gets name: temp.log

You can also stepwise fill such a buffer:

\definesavebuffer[slide]

\startslide

\starttext

\stopslide

\startslide

slide 1

\stopslide

text 1 \par

\startslide

slide 2

\stopslide

text 2 \par

246

Setups

\startslide

\stoptext

\stopslide

After this you will have a file \jobname-slide.tex that has the two lines wrapped as

text. You can set up a ‘save buffer’ to use a different filename (with the file key), a

different prefix using prefix and you can set up a directory. A different name is set

with the list key.

You can assign content to a buffer with a somewhat clumsy interface where we use the

delimiter \endbuffer. The only restriction is that this delimiter cannot be part of the

content:

\setbuffer[name]here comes some text\endbuffer

For more details and obscure commands that are used in other commands you can peek

into the source.

Using buffers in the cld interface is tricky because of the catcode magick that is involved

but there are setters and getters:

function arguments

buffers.assign name, content [,catcodes]

buffers.erase name

buffers.prepend name, content

buffers.append name, content

buffers.exists name

buffers.empty name

buffers.getcontent name

buffers.getlines name

There are a few more helpers that are used in other (low level) commands. Their

functionality might adapt to their usage there. The context.startbuffer and con­

text.stopbuffer are somewhat differently defined than regular cld commands.

18.8 Setups

A setup is basically a macro but is stored and accessed in a namespace separated from

ordinary macros. One important characteristic is that inside setups newlines are ig­

nored.

\startsetups MySetupA

247

xml

This is line 1

and this is line 2

\stopsetups

\setup{MySetupA}

This is line 1and this is line 2

A simple way out is to add a comment character preceded by a space. Instead you can

also use \space:

\startsetups [MySetupB]

This is line 1 %

and this is line 2\space

while here we have line 3

\stopsetups

\setup[MySetupB]

This is line 1 and this is line 2 while here we have line 3

You can use square brackets instead of space delimited names in definitions and also in

calling up a (list of) setup(s). The \directsetup command takes a single setup name

and is therefore more efficient.

Setups are basically simple macros although there is some magic involved that comes

from their usage in for instance xml where we pass an argument. That means we can

do the following:

\startsetups MySetupC

before#1after

\stopsetups

\setupwithargument{MySetupC}{ {\em and} }

before and after

Because a setup is a macro, the body is a linked list of tokens where each token takes 8

bytes of memory, so MySetupC has 12 tokens that take 96 bytes of memory (plus some

overhead related to macro management).

18.9 xml

Discussing xml is outside the scope of this document but it is worth mentioning that

once an xml tree is read is, the content is stored in strings and can be filtered into TEX,

248

Lua

where it is interpreted as if coming from files (in this case Lua strings). If needed the

content can be interpreted as TEX input.

18.10 Lua

As mentioned already, output from Lua is stored and when a Lua call finishes it ends

up on the so called input stack. Every time the engine needs a token it will fetch from

the input stack and the top of the stack can represent a file, token list or Lua output.

Interpreting bytes from files or Lua strings results in tokens. As a side note: Lua output

can also be already tokenized, because we can actually write tokens and nodes from

Lua, but that's more an implementation detail that makes the Lua input stack entries a

bit more complex. It is normally not something users will do when they use Lua in their

documents.

18.11 Protection

When you define macros there is the danger of overloading some defined by the system.

Best use CamelCase so that you stay away from clashes. You can enable some checking:

\enabledirectives[overloadmode=warning]

or when you want to quit on a clash:

\enabledirectives[overloadmode=error]

When these trackers are enabled you can get around the check with:

\pushoverloadmode

...

\popoverloadmode

But delay that till you're sure that redefining is okay.

18.11 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

