his Way

ConTgXt magazine #9
February 2005

Using Platform Fonts
Hans Hagen
PRAGMA ADE

In this document I will explain how to use system fonts in CONTEXT in a convenient
way. We will use the Verdana that ships with the Microsoft Windows environment as
an example.

There was a time that TeX distributions shipped with a truckload of fonts
compared to what your operating system came with. Times have changed
and so it makes sense to look into ways to tap this new source of fonts.

Do you recognize this font? It's the Verdana that comes with Microsoft
Windows. This truetype font is located in the systems font path, normally:

c:\windows\fonts
or:

%SYSTEMROOT%\fonts

In order to use this font, we need to generate the metrics. This can be
done with TeXfont. First you need to generate the so called Adobe Font
Metrics files:

ttf2afm -a verdana.ttf > verdana.afm
ttf2afm -a verdanab.ttf > verdanab.afm
ttf2afm -a verdanai.ttf > verdanai.afm
ttf2afm -a verdanaz.ttf > verdanaz.afm

After this, you can use TgXfont to produce the TgX Font Metrics files:

texfont
—--vendor=microsoft
—--collection=verdana
--encoding=texnansi
--pattern=verdana*.afm

In order to use the font, you need to have the following files present on
your system (four files on each of the first three paths):

<root>/afm/microsoft/verdana/verdanal|ilbl|z].afm
<root>/tfm/microsoft/verdana/verdanall|ilbl|z].tfm
<root>/truetype/microsoft/verdana/verdanall|ilblz].ttf
<root>/map/pdftex/context/texnansi-microsoft-verdana.map

However, there is no need to keep duplicate copies of the TrueType fonts
around, apart from possible copyright issues. First define an environment
variable:

OSFONTDIR=%SYSTEMROOT%\fonts

Next, adapt a few font paths in your local copy of texmf . cnf:

OSFONTDIR =

AFMFONTS = .;$TEXMF/fonts/afm//;$0SFONTDIR//

T1FONTS = .;$TEXMF/fonts/{typel,pfb}//;$0SFONTDIR//
TTFONTS = .;$TEXMF/fonts/{truetype,ttf}//; $0SFONTDIR//
OPENTYPEFONTS = . ;$TEXMF/fonts/opentype//; $0SFONTDIR//

In the ConTgXt distribution you will find a file context . cnf that provides
these definitions. The Verdana typescripts are part of the typescript
collection type-mws.tex. As an exampe we show how they are defined:

\starttypescript [sans] [verdana] [name]

\setups [font:fallback:sans]

\definefontsynonym[Sans] [Verdana]
\definefontsynonym[SansBold] [Verdana-Bold]
\definefontsynonym[SansItalic] [Verdana-Italic]

\definefontsynonym[SansBoldItalic] [Verdana-BoldItalic]
\stoptypescript
\starttypescript [sans] [verdana] [texnansi]

\definefontsynonym [Verdana]
[\typescriptthree-verdana]
[encoding=\typescriptthree]

\definefontsynonym [Verdana-Bold]
[\typescriptthree-verdanab]
[encoding=\typescriptthree]

\definefontsynonym [Verdana-Italic]
[\typescriptthree-verdanai]
[encoding=\typescriptthree]

\definefontsynonym [Verdana-BoldItalic]
[\typescriptthree-verdanaz]
[encoding=\typescriptthree]

\stoptypescript

\starttypescript [map] [verdana] [texnansi]
\loadmapfile[texnansi-microsoft-verdana.map]

\stoptypescript

Before you can use these typesescripts, you need to import this typescript
file. In your document (or style) a usable definition looks like:

\usetypescriptfile[type-msw]

\definetypeface [verdana]
[ss] [sans] [verdanal [default]
[encoding=texnansi]
\definetypeface [verdana]
[rm] [serif] [palatino] [default]
[encoding=texnansi,rscale=1.1]
\definetypeface [verdana]
[mm] [math] [palatino] [default]
[encoding=texnansi,rscale=1.1]
\definetypeface [verdana]
[tt] [mono] [modern] [default]
[encoding=texnansi,rscale=1.25]

We used this definition for this document. This gives us the table shown
in figure 1.

[verdana] \mr : Ag

\tf[\sc[\s1\it|\bf|\bs|\bi|\tfx|\tfxx|\tfa|\tfb|\tfc|\tfd

\rm| Ag | AG | Ag| Ag |Ag | Ag|Ag| Ag | a5 | Ag }\g;f%%;lA&g;

\ss| Ag | Ag | Ag | Ag |Ag | Ag |Ag | Ag | Ag | Ag Ag Ag

\tt| Ag | Ag |Ag| Ag | Ag |Ag|Ag| ae | » | Ag | Ag Ag Ag

Figure 1 \showbodyfont [verdana]

Those familiar with defining typescripts, may notice a new feature. In-
stead of defining each instance, we start with loading some fallbacks
using the \setups command.

\setups [font:fallback:sans]

These setups are defined in type-def.tex. We could have used type-
scripts, but this is faster. The fallbacks:

\startsetups [font:fallback:sans]

\definefontsynonym [Sans] [DefaultFont]
\definefontsynonym [SansBold] [Sans]
\definefontsynonym [SansItalic] [Sans]
\definefontsynonym [SansSlanted] [SansItalic]

\definefontsynonym [SansBoldItalic] [Sans]

\definefontsynonym [SansBoldSlanted] [SansBoldItalic]

\definefontsynonym [SansCaps] [Sans]
\stopsetups

Because we group the font definitions in (font) classes, these definitions
are (as usual) local to the definition of the verdana typeface definition.

While playing with this font —actually, we needed the Verdana because
one of our customers wanted to use this rather platform specific font— I
also decided to speed up typescript processing a bit.

First of all, there is now an option to quit parsing typescripts once the
one we're interested in is found and executed.

\starttypescript [sometypeface] [texnansi,ec,...]
\definetypeface [sometypeface] [rm]
\definetypeface [sometypeface] [ss]
\quittypescriptscanning

\stoptypescript

Quitting only makes sense when the file is loaded early in the parsing
stage, which happens to be true for the predefined typefaces.

Another speedup is to add the following directive to your local variant of
cont-sys.tex or to your style.

\preloadtypescripts

If we define one typeface, we normally need four passes over the type-
script files, one pass for rm, ss, tt and rm. Given:

\usetypescript [modern] [texnansi]

On my machine, in Februari 2005, I gain quite some gross execution
time as reported when I use the (command line) —time-statistics
directive. Times are in milliseconds. The values are corrected for the time
needed to process an empty, which takes about 500 milliseconds.

method time gain percentage
normal 950

quiting 800 150 15%
preloading 325 625 70%

When we mix typefaces in documents, we get similar results:

\usetypescript [modern] [texnansi]
\usetypescript [palatino] [texnansi]
\usetypescript [times] [texnansi]

We now get (rought estimates on multiple combined runs):

method time gain percentage
normal 2700

quiting 2200 500 20%
preloading 800 1900 70%

Further speedups at the macro level are possible but don’t make much
sense because we would gain only a few milliseconds when handling many
thousands of definitions, which is not the reality. We may also consider
packing keywords in macros, which would definitely speed up things a
bit as well as save memory, so maybe one day I will do this. Currently,
on my machine, preloading takes some 112.000 extra memory words,
and using a macros instead of strings can easily save us 20.000 memory
words and at the same time give us about 5% speed improvement (of
course only for typescript handling loading).

source code of this document

\usemodule [mag 01,abr 02]

\setvariables
[magazine]
[title={Using Platform Fonts},
author=Hans Hagen,
affiliation=PRAGMA ADE,
date=February 2005,
number=9]

\startbuffer[verdanal
\usetypescriptfile [type msw]

\definetypeface [verdanal
[ss] [sans] [verdana] [default]
[encoding=texnansi]
\definetypeface [verdana]
[rm] [serif] [palatino] [default]
[encoding=texnansi,rscale=1.1]
\definetypeface [verdanal
[mm] [math] [palatino] [default]
[encoding=texnansi,rscale=1.1]
\definetypeface [verdanal
[tt] [mono] [modern] [default]
[encoding=texnansi,rscale=1.25]
\stopbuffer

\getbuffer [verdana]

\startbuffer [abstract]
In this document I will explain how to use system fonts in
\CONTEXT\ in a convenient way. We will use the Verdana
that ships with the Microsoft Windows environment as an
example.

\stopbuffer

\starttext \setups [titlepage] \setups [title]

\start \switchtobodyfont [verdanal

There was a time that \TEX\ distributions shipped with a
truckload of fonts compared to what your operating system came

with. Times have changed and so it makes sense to look into
ways to tap this new source of fonts.

source code of this document

Do you recognize this font? It's the Verdana that comes with
Microsoft Windows. This truetype font is located in the systems
font path, normally:

\starttyping
c:\windows\fonts
\stoptyping

or:

\starttyping
SYSTEMROOT /\fonts
\stoptyping

In order to use this font, we need to generate the metrics. This
can be done with \TEXFONT. First you need to generate the so
called Adobe Font Metrics files:

\starttyping

ttf2afm —a verdana.ttf
ttf2afm a verdanab.ttf
ttf2afm —a verdanai.ttf
ttf2afm a verdanaz.ttf
\stoptyping

verdana.afm

verdanab.afm
verdanai.afm
verdanaz.afm

vV V V VvV

After this, you can use \TEXFONT\ to produce the \TEX\ Font
Metrics files:

\starttyping

texfont
vendor=microsoft
collection=verdana
encoding=texnansi
pattern=verdanax*.afm

\stoptyping

In order to use the font, you need to have the following files
present on your system (four files on each of the first three
paths):

\starttyping

<root>/afm/microsoft/verdana /verdanal i blz].afm
<root>/tfm/microsoft/verdana /verdanal/i/b!z].tfm
<root>/truetype /microsoft/verdana /verdanal i /b/z].ttf

source code of this document

<root>/map/pdftex/context /texnansi microsoft verdana.map
\stoptyping

However, there is no need to keep duplicate copies of the
TrueType fonts around, apart from possible copyright issues.
First define an environment variable:

\starttyping
OSFONTDIR=/SYSTEMROOT \fonts
\stoptyping

Next, adapt a few font paths in your local copy of \type
{texmf.cnf}:

\starttyping

OSFONTDIR =

AFMFONTS = .;$TEXMF /fonts/afm//;$0SFONTDIR

T1FONTS = .;$TEXMF/fonts/{typel,pfbl} //;$0SFONTDIR
TTFONTS = .;$TEXMF/fonts/{truetype,ttf} //;$0SFONTDIR
OPENTYPEFONTS = .;$TEXMF/fonts/ opentype// ;$0SFONTDIR
\stoptyping

In the \CONTEXT\ distribution you will find a file \type
{context.cnf} that provides these definitions. The Verdana
typescripts are part of the typescript collection \type
{type mws.tex}. As an exampe we show how they are defined:

\starttyping
\starttypescript [sans] [verdana] [name]

\setups [font:fallback:sans]

\definefontsynonym[Sans] [Verdana]
\definefontsynonym[SansBold] [Verdana Bold]
\definefontsynonym[SansItalic] [Verdana Italic]

\definefontsynonym[SansBoldItalic] [Verdana BoldItalic]
\stoptypescript

\starttypescript [sans] [verdana] [texnansi]

\definefontsynonym [Verdanal
[\typescriptthree verdanal
[encoding=\typescriptthree]

source code of this document

\definefontsynonym [Verdana Bold]
[\typescriptthree verdanab]
[encoding=\typescriptthree]

\definefontsynonym [Verdana Italic]
[\typescriptthree verdanail
[encoding=\typescriptthree]

\definefontsynonym [Verdana BoldItalic]
[\typescriptthree verdanaz]
[encoding=\typescriptthree]

\stoptypescript
\starttypescript [map] [verdana] [texnansi]
\loadmapfile[texnansi microsoft verdana.map]

\stoptypescript
\stoptyping

Before you can use these typesescripts, you need to import this
typescript file. In your document (or style) a usable definition
looks like:

\typebuffer [verdana]

We used this definition for this document. This gives us the
table shown in \in {figure} [fig:verdana].

\placefigure
[here]
[fig:verdana]
{\type {\showbodyfont[verdanall}}
{\showbodyfont [verdana] }

Those familiar with defining typescripts, may notice a new
feature. Instead of defining each instance, we start with
loading some fallbacks using the \type {\setups} command.

\starttyping
\setups [font:fallback:sans]
\stoptyping

These setups are defined in \type {type def.tex}. We could have
used typescripts, but this is faster. The fallbacks:

source code of this document

\starttyping

\startsetups [font:fallback:sans]
\definefontsynonym [Sans] [DefaultFont]
\definefontsynonym [SansBold] [Sans]
\definefontsynonym [SansItalic] [Sans]
\definefontsynonym [SansSlanted] [SansItalic]

\definefontsynonym [SansBoldItalic] [Sans]
\definefontsynonym [SansBoldSlanted] [SansBoldItalic]
\definefontsynonym [SansCaps] [Sans]
\stopsetups
\stoptyping

Because we group the font definitions in (font) classes, these
definitions are (as usual) local to the definition of the \type
{verdana} typeface definition.

While playing with this font (< /actually, we needed the Verdana
because one of our customers wanted to use this rather platform
specific font > I also decided to speed up typescript processing
a bit.

First of all, there is now an option to quit parsing typescripts
once the one we re interested in is found and executed.

\starttyping
\starttypescript [sometypeface] [texnansi,ec,...]

\definetypeface [sometypeface] [rm]
\definetypeface [sometypeface] [ss]

\quittypescriptscanning

\stoptypescript
\stoptyping

Quitting only makes sense when the file is loaded early in the
parsing stage, which happens to be true for the predefined
typefaces.

Another speedup is to add the following directive to your local
variant of \type {cont sys.tex} or to your style.

source code of this document

\starttyping
\preloadtypescripts
\stoptyping

If we define one typeface, we normally need four passes over the
typescript files, one pass for rm, ss, tt and rm. Given:

\starttyping
\usetypescript [modern] [texnansi]
\stoptyping

On my machine, in Februari 2005, I gain quite some gross
execution time as reported when I use the (command line)
\type { time statistics} directive. Times are in
milliseconds. The values are corrected for the time needed
to process an empty, which takes about 500 milliseconds.

\starttabulate[/1Bj2/cj2/cj2/c!]

\NC method A\NC \bf time \NC \bf gain \NC \bf percentage \NC \NR
\NC normal \NC 950 \NC \NC \NC \NR
\IC quiting \NC 800 \NC 150 \NC 15\ \NC \NR
\NC preloading \NC 325 \NC 625 \NC 70\ \NC \NR
\stoptabulate

When we mix typefaces in documents, we get similar results:

\starttyping

\usetypescript [modern] [texnansi]
\usetypescript [palatino] [texnansi]
\usetypescript [times] [texnansi]
\stoptyping

We now get (rought estimates on multiple combined runs):

\starttabulate[|/1Bj2/cj2/cj2/c']

\NC method \NC \bf time \NC \bf gain \NC \bf percentage \NC \NR
\NC normal \NC 2700 \NC \NC \NC \NR
\NC quiting \NC 2200 \NC 500 \NC 20\ \NC \NR
\NC preloading \NC 800 \NC 1900 \NC 70\ \NC \NR
\stoptabulate

Further speedups at the macro level are possible but
don’'t make much sense because we would gain only a few
milliseconds when handling many thousands of definitioms,

source code of this document

which is not the reality. We may also consider packing
keywords in macros, which would definitely speed up things
a bit as well as save memory, so maybe one day I will do
this. Currently, on my machine, preloading takes some
112.000 extra memory words, and using a macros instead

of strings can easily save us 20.000 memory words and at
the same time give us about 5\ speed improvement (of
course only for typescript handling {\em loading}).

\stop \page

\setups [listing] \setups [lastpage] \stoptext

